123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- #ifndef SO3_MATH_H
- #define SO3_MATH_H
- #include <math.h>
- #include <Eigen/Core>
- #define SKEW_SYM_MATRX(v) 0.0,-v[2],v[1],v[2],0.0,-v[0],-v[1],v[0],0.0
- template<typename T>
- Eigen::Matrix<T, 3, 3> skew_sym_mat(const Eigen::Matrix<T, 3, 1> &v)
- {
- Eigen::Matrix<T, 3, 3> skew_sym_mat;
- skew_sym_mat<<0.0,-v[2],v[1],v[2],0.0,-v[0],-v[1],v[0],0.0;
- return skew_sym_mat;
- }
- template<typename T>
- Eigen::Matrix<T, 3, 3> Exp(const Eigen::Matrix<T, 3, 1> &&ang)
- {
- T ang_norm = ang.norm();
- Eigen::Matrix<T, 3, 3> Eye3 = Eigen::Matrix<T, 3, 3>::Identity();
- if (ang_norm > 0.0000001)
- {
- Eigen::Matrix<T, 3, 1> r_axis = ang / ang_norm;
- Eigen::Matrix<T, 3, 3> K;
- K << SKEW_SYM_MATRX(r_axis);
- /// Roderigous Tranformation
- return Eye3 + std::sin(ang_norm) * K + (1.0 - std::cos(ang_norm)) * K * K;
- }
- else
- {
- return Eye3;
- }
- }
- template<typename T, typename Ts>
- Eigen::Matrix<T, 3, 3> Exp(const Eigen::Matrix<T, 3, 1> &ang_vel, const Ts &dt)
- {
- T ang_vel_norm = ang_vel.norm();
- Eigen::Matrix<T, 3, 3> Eye3 = Eigen::Matrix<T, 3, 3>::Identity();
- if (ang_vel_norm > 0.0000001)
- {
- Eigen::Matrix<T, 3, 1> r_axis = ang_vel / ang_vel_norm;
- Eigen::Matrix<T, 3, 3> K;
- K << SKEW_SYM_MATRX(r_axis);
- T r_ang = ang_vel_norm * dt;
- /// Roderigous Tranformation
- return Eye3 + std::sin(r_ang) * K + (1.0 - std::cos(r_ang)) * K * K;
- }
- else
- {
- return Eye3;
- }
- }
- template<typename T>
- Eigen::Matrix<T, 3, 3> Exp(const T &v1, const T &v2, const T &v3)
- {
- T &&norm = sqrt(v1 * v1 + v2 * v2 + v3 * v3);
- Eigen::Matrix<T, 3, 3> Eye3 = Eigen::Matrix<T, 3, 3>::Identity();
- if (norm > 0.00001)
- {
- T r_ang[3] = {v1 / norm, v2 / norm, v3 / norm};
- Eigen::Matrix<T, 3, 3> K;
- K << SKEW_SYM_MATRX(r_ang);
- /// Roderigous Tranformation
- return Eye3 + std::sin(norm) * K + (1.0 - std::cos(norm)) * K * K;
- }
- else
- {
- return Eye3;
- }
- }
- /* Logrithm of a Rotation Matrix */
- template<typename T>
- Eigen::Matrix<T,3,1> Log(const Eigen::Matrix<T, 3, 3> &R)
- {
- T theta = (R.trace() > 3.0 - 1e-6) ? 0.0 : std::acos(0.5 * (R.trace() - 1));
- Eigen::Matrix<T,3,1> K(R(2,1) - R(1,2), R(0,2) - R(2,0), R(1,0) - R(0,1));
- return (std::abs(theta) < 0.001) ? (0.5 * K) : (0.5 * theta / std::sin(theta) * K);
- }
- template<typename T>
- Eigen::Matrix<T, 3, 1> RotMtoEuler(const Eigen::Matrix<T, 3, 3> &rot)
- {
- T sy = sqrt(rot(0,0)*rot(0,0) + rot(1,0)*rot(1,0));
- bool singular = sy < 1e-6;
- T x, y, z;
- if(!singular)
- {
- x = atan2(rot(2, 1), rot(2, 2));
- y = atan2(-rot(2, 0), sy);
- z = atan2(rot(1, 0), rot(0, 0));
- }
- else
- {
- x = atan2(-rot(1, 2), rot(1, 1));
- y = atan2(-rot(2, 0), sy);
- z = 0;
- }
- Eigen::Matrix<T, 3, 1> ang(x, y, z);
- return ang;
- }
- #endif
|