12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- # import matplotlib
- # matplotlib.use('Agg')
- import numpy as np
- import matplotlib.pyplot as plt
- #######for ikfom
- fig, axs = plt.subplots(4,2)
- lab_pre = ['', 'pre-x', 'pre-y', 'pre-z']
- lab_out = ['', 'out-x', 'out-y', 'out-z']
- plot_ind = range(7,10)
- a_pre=np.loadtxt('mat_pre.txt')
- a_out=np.loadtxt('mat_out.txt')
- time=a_pre[:,0]
- axs[0,0].set_title('Attitude')
- axs[1,0].set_title('Translation')
- axs[2,0].set_title('Extrins-R')
- axs[3,0].set_title('Extrins-T')
- axs[0,1].set_title('Velocity')
- axs[1,1].set_title('bg')
- axs[2,1].set_title('ba')
- axs[3,1].set_title('Gravity')
- for i in range(1,4):
- for j in range(8):
- axs[j%4, j/4].plot(time, a_pre[:,i+j*3],'.-', label=lab_pre[i])
- axs[j%4, j/4].plot(time, a_out[:,i+j*3],'.-', label=lab_out[i])
- for j in range(8):
- # axs[j].set_xlim(386,389)
- axs[j%4, j/4].grid()
- axs[j%4, j/4].legend()
- plt.grid()
- #######for ikfom#######
- #### Draw IMU data
- # fig, axs = plt.subplots(2)
- # imu=np.loadtxt('imu.txt')
- # time=imu[:,0]
- # axs[0].set_title('Gyroscope')
- # axs[1].set_title('Accelerameter')
- # lab_1 = ['gyr-x', 'gyr-y', 'gyr-z']
- # lab_2 = ['acc-x', 'acc-y', 'acc-z']
- # for i in range(3):
- # # if i==1:
- # axs[0].plot(time, imu[:,i+1],'.-', label=lab_1[i])
- # axs[1].plot(time, imu[:,i+4],'.-', label=lab_2[i])
- # for i in range(2):
- # # axs[i].set_xlim(386,389)
- # axs[i].grid()
- # axs[i].legend()
- # plt.grid()
- # #### Draw time calculation
- # plt.figure(3)
- # fig = plt.figure()
- # font1 = {'family' : 'Times New Roman',
- # 'weight' : 'normal',
- # 'size' : 12,
- # }
- # c="red"
- # a_out1=np.loadtxt('Log/mat_out_time_indoor1.txt')
- # a_out2=np.loadtxt('Log/mat_out_time_indoor2.txt')
- # a_out3=np.loadtxt('Log/mat_out_time_outdoor.txt')
- # # n = a_out[:,1].size
- # # time_mean = a_out[:,1].mean()
- # # time_se = a_out[:,1].std() / np.sqrt(n)
- # # time_err = a_out[:,1] - time_mean
- # # feat_mean = a_out[:,2].mean()
- # # feat_err = a_out[:,2] - feat_mean
- # # feat_se = a_out[:,2].std() / np.sqrt(n)
- # ax1 = fig.add_subplot(111)
- # ax1.set_ylabel('Effective Feature Numbers',font1)
- # ax1.boxplot(a_out1[:,2], showfliers=False, positions=[0.9])
- # ax1.boxplot(a_out2[:,2], showfliers=False, positions=[1.9])
- # ax1.boxplot(a_out3[:,2], showfliers=False, positions=[2.9])
- # ax1.set_ylim([0, 3000])
- # ax2 = ax1.twinx()
- # ax2.spines['right'].set_color('red')
- # ax2.set_ylabel('Compute Time (ms)',font1)
- # ax2.yaxis.label.set_color('red')
- # ax2.tick_params(axis='y', colors='red')
- # ax2.boxplot(a_out1[:,1]*1000, showfliers=False, positions=[1.1],boxprops=dict(color=c),capprops=dict(color=c),whiskerprops=dict(color=c))
- # ax2.boxplot(a_out2[:,1]*1000, showfliers=False, positions=[2.1],boxprops=dict(color=c),capprops=dict(color=c),whiskerprops=dict(color=c))
- # ax2.boxplot(a_out3[:,1]*1000, showfliers=False, positions=[3.1],boxprops=dict(color=c),capprops=dict(color=c),whiskerprops=dict(color=c))
- # ax2.set_xlim([0.5, 3.5])
- # ax2.set_ylim([0, 100])
- # plt.xticks([1,2,3], ('Outdoor Scene', 'Indoor Scene 1', 'Indoor Scene 2'))
- # # # print(time_se)
- # # # print(a_out3[:,2])
- # plt.grid()
- # plt.savefig("time.pdf", dpi=1200)
- plt.show()
|