// This is an advanced implementation of the algorithm described in the // following paper: // C. Hertzberg, R. Wagner, U. Frese, and L. Schroder. Integratinggeneric sensor fusion algorithms with sound state representationsthrough encapsulation of manifolds. // CoRR, vol. abs/1107.1119, 2011.[Online]. Available: http://arxiv.org/abs/1107.1119 /* * Copyright (c) 2019--2023, The University of Hong Kong * All rights reserved. * * Modifier: Dongjiao HE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Universitaet Bremen nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 2008--2011, Universitaet Bremen * All rights reserved. * * Author: Christoph Hertzberg * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Universitaet Bremen nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * @file mtk/src/mtkmath.hpp * @brief several math utility functions. */ #ifndef MTKMATH_H_ #define MTKMATH_H_ #include #include #include "../types/vect.hpp" #ifndef M_PI #define M_PI 3.1415926535897932384626433832795 #endif namespace MTK { namespace internal { template struct traits { typedef typename Manifold::scalar scalar; enum {DOF = Manifold::DOF}; typedef vect vectorized_type; typedef Eigen::Matrix matrix_type; }; template<> struct traits : traits > {}; template<> struct traits : traits > {}; } // namespace internal /** * \defgroup MTKMath Mathematical helper functions */ //@{ //! constant @f$ \pi @f$ const double pi = M_PI; template inline scalar tolerance(); template<> inline float tolerance() { return 1e-5f; } template<> inline double tolerance() { return 1e-11; } /** * normalize @a x to @f$[-bound, bound] @f$. * * result for @f$ x = bound + 2\cdot n\cdot bound @f$ is arbitrary @f$\pm bound @f$. */ template inline scalar normalize(scalar x, scalar bound){ //not used if(std::fabs(x) <= bound) return x; int r = (int)(x *(scalar(1.0)/ bound)); return x - ((r + (r>>31) + 1) & ~1)*bound; } /** * Calculate cosine and sinc of sqrt(x2). * @param x2 the squared angle must be non-negative * @return a pair containing cos and sinc of sqrt(x2) */ template std::pair cos_sinc_sqrt(const scalar &x2){ using std::sqrt; using std::cos; using std::sin; static scalar const taylor_0_bound = boost::math::tools::epsilon(); static scalar const taylor_2_bound = sqrt(taylor_0_bound); static scalar const taylor_n_bound = sqrt(taylor_2_bound); assert(x2>=0 && "argument must be non-negative"); // FIXME check if bigger bounds are possible if(x2>=taylor_n_bound) { // slow fall-back solution scalar x = sqrt(x2); return std::make_pair(cos(x), sin(x)/x); // x is greater than 0. } // FIXME Replace by Horner-Scheme (4 instead of 5 FLOP/term, numerically more stable, theoretically cos and sinc can be calculated in parallel using SSE2 mulpd/addpd) // TODO Find optimal coefficients using Remez algorithm static scalar const inv[] = {1/3., 1/4., 1/5., 1/6., 1/7., 1/8., 1/9.}; scalar cosi = 1., sinc=1; scalar term = -1/2. * x2; for(int i=0; i<3; ++i) { cosi += term; term *= inv[2*i]; sinc += term; term *= -inv[2*i+1] * x2; } return std::make_pair(cosi, sinc); } template Eigen::Matrix hat(const Base& v) { Eigen::Matrix res; res << 0, -v[2], v[1], v[2], 0, -v[0], -v[1], v[0], 0; return res; } template Eigen::Matrix A_inv_trans(const Base& v){ Eigen::Matrix res; if(v.norm() > MTK::tolerance()) { res = Eigen::Matrix::Identity() + 0.5 * hat(v) + (1 - v.norm() * std::cos(v.norm() / 2) / 2 / std::sin(v.norm() / 2)) * hat(v) * hat(v) / v.squaredNorm(); } else { res = Eigen::Matrix::Identity(); } return res; } template Eigen::Matrix A_inv(const Base& v){ Eigen::Matrix res; if(v.norm() > MTK::tolerance()) { res = Eigen::Matrix::Identity() - 0.5 * hat(v) + (1 - v.norm() * std::cos(v.norm() / 2) / 2 / std::sin(v.norm() / 2)) * hat(v) * hat(v) / v.squaredNorm(); } else { res = Eigen::Matrix::Identity(); } return res; } template Eigen::Matrix S2_w_expw_( Eigen::Matrix v, scalar length) { Eigen::Matrix res; scalar norm = std::sqrt(v[0]*v[0] + v[1]*v[1]); if(norm < MTK::tolerance()){ res = Eigen::Matrix::Zero(); res(0, 1) = 1; res(1, 2) = 1; res /= length; } else{ res << -v[0]*(1/norm-1/std::tan(norm))/std::sin(norm), norm/std::sin(norm), 0, -v[1]*(1/norm-1/std::tan(norm))/std::sin(norm), 0, norm/std::sin(norm); res /= length; } } template Eigen::Matrix A_matrix(const Base & v){ Eigen::Matrix res; double squaredNorm = v[0] * v[0] + v[1] * v[1] + v[2] * v[2]; double norm = std::sqrt(squaredNorm); if(norm < MTK::tolerance()){ res = Eigen::Matrix::Identity(); } else{ res = Eigen::Matrix::Identity() + (1 - std::cos(norm)) / squaredNorm * hat(v) + (1 - std::sin(norm) / norm) / squaredNorm * hat(v) * hat(v); } return res; } template scalar exp(vectview result, vectview vec, const scalar& scale = 1) { scalar norm2 = vec.squaredNorm(); std::pair cos_sinc = cos_sinc_sqrt(scale*scale * norm2); scalar mult = cos_sinc.second * scale; result = mult * vec; return cos_sinc.first; } /** * Inverse function to @c exp. * * @param result @c vectview to the result * @param w scalar part of input * @param vec vector part of input * @param scale scale result by this value * @param plus_minus_periodicity if true values @f$[w, vec]@f$ and @f$[-w, -vec]@f$ give the same result */ template void log(vectview result, const scalar &w, const vectview vec, const scalar &scale, bool plus_minus_periodicity) { // FIXME implement optimized case for vec.squaredNorm() <= tolerance() * (w*w) via Rational Remez approximation ~> only one division scalar nv = vec.norm(); if(nv < tolerance()) { if(!plus_minus_periodicity && w < 0) { // find the maximal entry: int i; nv = vec.cwiseAbs().maxCoeff(&i); result = scale * std::atan2(nv, w) * vect::Unit(i); return; } nv = tolerance(); } scalar s = scale / nv * (plus_minus_periodicity ? std::atan(nv / w) : std::atan2(nv, w) ); result = s * vec; } } // namespace MTK #endif /* MTKMATH_H_ */