123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313 |
- #include "common.hpp"
- cv::Rect get_rect(cv::Mat& img, float bbox[4]) {
- float l, r, t, b;
- float r_w = Yolo::INPUT_W / (img.cols * 1.0);
- float r_h = Yolo::INPUT_H / (img.rows * 1.0);
- if (r_h > r_w) {
- l = bbox[0] - bbox[2] / 2.f;
- r = bbox[0] + bbox[2] / 2.f;
- t = bbox[1] - bbox[3] / 2.f - (Yolo::INPUT_H - r_w * img.rows) / 2;
- b = bbox[1] + bbox[3] / 2.f - (Yolo::INPUT_H - r_w * img.rows) / 2;
- l = l / r_w;
- r = r / r_w;
- t = t / r_w;
- b = b / r_w;
- } else {
- l = bbox[0] - bbox[2] / 2.f - (Yolo::INPUT_W - r_h * img.cols) / 2;
- r = bbox[0] + bbox[2] / 2.f - (Yolo::INPUT_W - r_h * img.cols) / 2;
- t = bbox[1] - bbox[3] / 2.f;
- b = bbox[1] + bbox[3] / 2.f;
- l = l / r_h;
- r = r / r_h;
- t = t / r_h;
- b = b / r_h;
- }
- return cv::Rect(round(l), round(t), round(r - l), round(b - t));
- }
- float iou(float lbox[4], float rbox[4]) {
- float interBox[] = {
- (std::max)(lbox[0] - lbox[2] / 2.f , rbox[0] - rbox[2] / 2.f), //left
- (std::min)(lbox[0] + lbox[2] / 2.f , rbox[0] + rbox[2] / 2.f), //right
- (std::max)(lbox[1] - lbox[3] / 2.f , rbox[1] - rbox[3] / 2.f), //top
- (std::min)(lbox[1] + lbox[3] / 2.f , rbox[1] + rbox[3] / 2.f), //bottom
- };
- if (interBox[2] > interBox[3] || interBox[0] > interBox[1])
- return 0.0f;
- float interBoxS = (interBox[1] - interBox[0])*(interBox[3] - interBox[2]);
- return interBoxS / (lbox[2] * lbox[3] + rbox[2] * rbox[3] - interBoxS);
- }
- bool cmp(const Yolo::Detection& a, const Yolo::Detection& b) {
- return a.conf > b.conf;
- }
- void nms(std::vector<Yolo::Detection>& res, float *output, float conf_thresh, float nms_thresh) {
- int det_size = sizeof(Yolo::Detection) / sizeof(float);
- std::map<float, std::vector<Yolo::Detection>> m;
- for (int i = 0; i < output[0] && i < Yolo::MAX_OUTPUT_BBOX_COUNT; i++) {
- if (output[1 + det_size * i + 4] <= conf_thresh) continue;
- Yolo::Detection det;
- memcpy(&det, &output[1 + det_size * i], det_size * sizeof(float));
- if (m.count(det.class_id) == 0) m.emplace(det.class_id, std::vector<Yolo::Detection>());
- m[det.class_id].push_back(det);
- }
- for (auto it = m.begin(); it != m.end(); it++) {
- //std::cout << it->second[0].class_id << " --- " << std::endl;
- auto& dets = it->second;
- std::sort(dets.begin(), dets.end(), cmp);
- for (size_t m = 0; m < dets.size(); ++m) {
- auto& item = dets[m];
- res.push_back(item);
- for (size_t n = m + 1; n < dets.size(); ++n) {
- if (iou(item.bbox, dets[n].bbox) > nms_thresh) {
- dets.erase(dets.begin() + n);
- --n;
- }
- }
- }
- }
- }
- std::map<std::string, Weights> loadWeights(const std::string file) {
- std::cout << "Loading weights: " << file << std::endl;
- std::map<std::string, Weights> weightMap;
- // Open weights file
- std::ifstream input(file);
- assert(input.is_open() && "Unable to load weight file. please check if the .wts file path is right!!!!!!");
- // Read number of weight blobs
- int32_t count;
- input >> count;
- assert(count > 0 && "Invalid weight map file.");
- while (count--)
- {
- Weights wt{ DataType::kFLOAT, nullptr, 0 };
- uint32_t size;
- // Read name and type of blob
- std::string name;
- input >> name >> std::dec >> size;
- wt.type = DataType::kFLOAT;
- // Load blob
- uint32_t* val = reinterpret_cast<uint32_t*>(malloc(sizeof(val) * size));
- for (uint32_t x = 0, y = size; x < y; ++x)
- {
- input >> std::hex >> val[x];
- }
- wt.values = val;
- wt.count = size;
- weightMap[name] = wt;
- }
- return weightMap;
- }
- IScaleLayer* addBatchNorm2d(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, std::string lname, float eps) {
- float *gamma = (float*)weightMap[lname + ".weight"].values;
- float *beta = (float*)weightMap[lname + ".bias"].values;
- float *mean = (float*)weightMap[lname + ".running_mean"].values;
- float *var = (float*)weightMap[lname + ".running_var"].values;
- int len = weightMap[lname + ".running_var"].count;
- float *scval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
- for (int i = 0; i < len; i++) {
- scval[i] = gamma[i] / sqrt(var[i] + eps);
- }
- Weights scale{ DataType::kFLOAT, scval, len };
- float *shval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
- for (int i = 0; i < len; i++) {
- shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps);
- }
- Weights shift{ DataType::kFLOAT, shval, len };
- float *pval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
- for (int i = 0; i < len; i++) {
- pval[i] = 1.0;
- }
- Weights power{ DataType::kFLOAT, pval, len };
- weightMap[lname + ".scale"] = scale;
- weightMap[lname + ".shift"] = shift;
- weightMap[lname + ".power"] = power;
- IScaleLayer* scale_1 = network->addScale(input, ScaleMode::kCHANNEL, shift, scale, power);
- assert(scale_1);
- return scale_1;
- }
- ILayer* convBlock(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int outch, int ksize, int s, int g, std::string lname) {
- Weights emptywts{ DataType::kFLOAT, nullptr, 0 };
- int p = ksize / 3;
- IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{ ksize, ksize }, weightMap[lname + ".conv.weight"], emptywts);
- assert(conv1);
- conv1->setStrideNd(DimsHW{ s, s });
- conv1->setPaddingNd(DimsHW{ p, p });
- conv1->setNbGroups(g);
- IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + ".bn", 1e-3);
- // silu = x * sigmoid
- auto sig = network->addActivation(*bn1->getOutput(0), ActivationType::kSIGMOID);
- assert(sig);
- auto ew = network->addElementWise(*bn1->getOutput(0), *sig->getOutput(0), ElementWiseOperation::kPROD);
- assert(ew);
- return ew;
- }
- ILayer* focus(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int inch, int outch, int ksize, std::string lname) {
- ISliceLayer *s1 = network->addSlice(input, Dims3{ 0, 0, 0 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 });
- ISliceLayer *s2 = network->addSlice(input, Dims3{ 0, 1, 0 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 });
- ISliceLayer *s3 = network->addSlice(input, Dims3{ 0, 0, 1 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 });
- ISliceLayer *s4 = network->addSlice(input, Dims3{ 0, 1, 1 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 });
- ITensor* inputTensors[] = { s1->getOutput(0), s2->getOutput(0), s3->getOutput(0), s4->getOutput(0) };
- auto cat = network->addConcatenation(inputTensors, 4);
- auto conv = convBlock(network, weightMap, *cat->getOutput(0), outch, ksize, 1, 1, lname + ".conv");
- return conv;
- }
- ILayer* bottleneck(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, bool shortcut, int g, float e, std::string lname) {
- auto cv1 = convBlock(network, weightMap, input, (int)((float)c2 * e), 1, 1, 1, lname + ".cv1");
- auto cv2 = convBlock(network, weightMap, *cv1->getOutput(0), c2, 3, 1, g, lname + ".cv2");
- if (shortcut && c1 == c2) {
- auto ew = network->addElementWise(input, *cv2->getOutput(0), ElementWiseOperation::kSUM);
- return ew;
- }
- return cv2;
- }
- ILayer* bottleneckCSP(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, int n, bool shortcut, int g, float e, std::string lname) {
- Weights emptywts{ DataType::kFLOAT, nullptr, 0 };
- int c_ = (int)((float)c2 * e);
- auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1");
- auto cv2 = network->addConvolutionNd(input, c_, DimsHW{ 1, 1 }, weightMap[lname + ".cv2.weight"], emptywts);
- ITensor *y1 = cv1->getOutput(0);
- for (int i = 0; i < n; i++) {
- auto b = bottleneck(network, weightMap, *y1, c_, c_, shortcut, g, 1.0, lname + ".m." + std::to_string(i));
- y1 = b->getOutput(0);
- }
- auto cv3 = network->addConvolutionNd(*y1, c_, DimsHW{ 1, 1 }, weightMap[lname + ".cv3.weight"], emptywts);
- ITensor* inputTensors[] = { cv3->getOutput(0), cv2->getOutput(0) };
- auto cat = network->addConcatenation(inputTensors, 2);
- IScaleLayer* bn = addBatchNorm2d(network, weightMap, *cat->getOutput(0), lname + ".bn", 1e-4);
- auto lr = network->addActivation(*bn->getOutput(0), ActivationType::kLEAKY_RELU);
- lr->setAlpha(0.1);
- auto cv4 = convBlock(network, weightMap, *lr->getOutput(0), c2, 1, 1, 1, lname + ".cv4");
- return cv4;
- }
- ILayer* C3(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, int n, bool shortcut, int g, float e, std::string lname) {
- int c_ = (int)((float)c2 * e);
- auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1");
- auto cv2 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv2");
- ITensor *y1 = cv1->getOutput(0);
- for (int i = 0; i < n; i++) {
- auto b = bottleneck(network, weightMap, *y1, c_, c_, shortcut, g, 1.0, lname + ".m." + std::to_string(i));
- y1 = b->getOutput(0);
- }
- ITensor* inputTensors[] = { y1, cv2->getOutput(0) };
- auto cat = network->addConcatenation(inputTensors, 2);
- auto cv3 = convBlock(network, weightMap, *cat->getOutput(0), c2, 1, 1, 1, lname + ".cv3");
- return cv3;
- }
- ILayer* SPP(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, int k1, int k2, int k3, std::string lname) {
- int c_ = c1 / 2;
- auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1");
- auto pool1 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k1, k1 });
- pool1->setPaddingNd(DimsHW{ k1 / 2, k1 / 2 });
- pool1->setStrideNd(DimsHW{ 1, 1 });
- auto pool2 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k2, k2 });
- pool2->setPaddingNd(DimsHW{ k2 / 2, k2 / 2 });
- pool2->setStrideNd(DimsHW{ 1, 1 });
- auto pool3 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k3, k3 });
- pool3->setPaddingNd(DimsHW{ k3 / 2, k3 / 2 });
- pool3->setStrideNd(DimsHW{ 1, 1 });
- ITensor* inputTensors[] = { cv1->getOutput(0), pool1->getOutput(0), pool2->getOutput(0), pool3->getOutput(0) };
- auto cat = network->addConcatenation(inputTensors, 4);
- auto cv2 = convBlock(network, weightMap, *cat->getOutput(0), c2, 1, 1, 1, lname + ".cv2");
- return cv2;
- }
- ILayer* SPPF(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, int k, std::string lname) {
- int c_ = c1 / 2;
- auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1");
- auto pool1 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k, k });
- pool1->setPaddingNd(DimsHW{ k / 2, k / 2 });
- pool1->setStrideNd(DimsHW{ 1, 1 });
- auto pool2 = network->addPoolingNd(*pool1->getOutput(0), PoolingType::kMAX, DimsHW{ k, k });
- pool2->setPaddingNd(DimsHW{ k / 2, k / 2 });
- pool2->setStrideNd(DimsHW{ 1, 1 });
- auto pool3 = network->addPoolingNd(*pool2->getOutput(0), PoolingType::kMAX, DimsHW{ k, k });
- pool3->setPaddingNd(DimsHW{ k / 2, k / 2 });
- pool3->setStrideNd(DimsHW{ 1, 1 });
- ITensor* inputTensors[] = { cv1->getOutput(0), pool1->getOutput(0), pool2->getOutput(0), pool3->getOutput(0) };
- auto cat = network->addConcatenation(inputTensors, 4);
- auto cv2 = convBlock(network, weightMap, *cat->getOutput(0), c2, 1, 1, 1, lname + ".cv2");
- return cv2;
- }
- std::vector<std::vector<float>> getAnchors(std::map<std::string, Weights>& weightMap, std::string lname) {
- std::vector<std::vector<float>> anchors;
- Weights wts = weightMap[lname + ".anchor_grid"];
- int anchor_len = Yolo::CHECK_COUNT * 2;
- for (int i = 0; i < wts.count / anchor_len; i++) {
- auto *p = (const float*)wts.values + i * anchor_len;
- std::vector<float> anchor(p, p + anchor_len);
- anchors.push_back(anchor);
- }
- return anchors;
- }
- IPluginV2Layer* addYoLoLayer(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, std::string lname, std::vector<IConvolutionLayer*> dets) {
- auto creator = getPluginRegistry()->getPluginCreator("YoloLayer_TRT", "1");
- auto anchors = getAnchors(weightMap, lname);
- PluginField plugin_fields[2];
- int netinfo[4] = {Yolo::CLASS_NUM, Yolo::INPUT_W, Yolo::INPUT_H, Yolo::MAX_OUTPUT_BBOX_COUNT};
- plugin_fields[0].data = netinfo;
- plugin_fields[0].length = 4;
- plugin_fields[0].name = "netinfo";
- plugin_fields[0].type = PluginFieldType::kFLOAT32;
- int scale = 8;
- std::vector<Yolo::YoloKernel> kernels;
- for (size_t i = 0; i < anchors.size(); i++) {
- Yolo::YoloKernel kernel;
- kernel.width = Yolo::INPUT_W / scale;
- kernel.height = Yolo::INPUT_H / scale;
- memcpy(kernel.anchors, &anchors[i][0], anchors[i].size() * sizeof(float));
- kernels.push_back(kernel);
- scale *= 2;
- }
- plugin_fields[1].data = &kernels[0];
- plugin_fields[1].length = kernels.size();
- plugin_fields[1].name = "kernels";
- plugin_fields[1].type = PluginFieldType::kFLOAT32;
- PluginFieldCollection plugin_data;
- plugin_data.nbFields = 2;
- plugin_data.fields = plugin_fields;
- IPluginV2 *plugin_obj = creator->createPlugin("yololayer", &plugin_data);
- std::vector<ITensor*> input_tensors;
- for (auto det: dets) {
- input_tensors.push_back(det->getOutput(0));
- }
- auto yolo = network->addPluginV2(&input_tensors[0], input_tensors.size(), *plugin_obj);
- return yolo;
- }
|