123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313 |
- #include <assert.h>
- #include <vector>
- #include <iostream>
- #include "yololayer.h"
- #include "cuda_utils.h"
- namespace Tn
- {
- template<typename T>
- void write(char*& buffer, const T& val)
- {
- *reinterpret_cast<T*>(buffer) = val;
- buffer += sizeof(T);
- }
- template<typename T>
- void read(const char*& buffer, T& val)
- {
- val = *reinterpret_cast<const T*>(buffer);
- buffer += sizeof(T);
- }
- }
- using namespace Yolo;
- namespace nvinfer1
- {
- YoloLayerPlugin::YoloLayerPlugin(int classCount, int netWidth, int netHeight, int maxOut, const std::vector<Yolo::YoloKernel>& vYoloKernel)
- {
- mClassCount = classCount;
- mYoloV5NetWidth = netWidth;
- mYoloV5NetHeight = netHeight;
- mMaxOutObject = maxOut;
- mYoloKernel = vYoloKernel;
- mKernelCount = vYoloKernel.size();
- CUDA_CHECK(cudaMallocHost(&mAnchor, mKernelCount * sizeof(void*)));
- size_t AnchorLen = sizeof(float)* CHECK_COUNT * 2;
- for (int ii = 0; ii < mKernelCount; ii++)
- {
- CUDA_CHECK(cudaMalloc(&mAnchor[ii], AnchorLen));
- const auto& yolo = mYoloKernel[ii];
- CUDA_CHECK(cudaMemcpy(mAnchor[ii], yolo.anchors, AnchorLen, cudaMemcpyHostToDevice));
- }
- }
- YoloLayerPlugin::~YoloLayerPlugin()
- {
- for (int ii = 0; ii < mKernelCount; ii++)
- {
- CUDA_CHECK(cudaFree(mAnchor[ii]));
- }
- CUDA_CHECK(cudaFreeHost(mAnchor));
- }
- // create the plugin at runtime from a byte stream
- YoloLayerPlugin::YoloLayerPlugin(const void* data, size_t length)
- {
- using namespace Tn;
- const char *d = reinterpret_cast<const char *>(data), *a = d;
- read(d, mClassCount);
- read(d, mThreadCount);
- read(d, mKernelCount);
- read(d, mYoloV5NetWidth);
- read(d, mYoloV5NetHeight);
- read(d, mMaxOutObject);
- mYoloKernel.resize(mKernelCount);
- auto kernelSize = mKernelCount * sizeof(YoloKernel);
- memcpy(mYoloKernel.data(), d, kernelSize);
- d += kernelSize;
- CUDA_CHECK(cudaMallocHost(&mAnchor, mKernelCount * sizeof(void*)));
- size_t AnchorLen = sizeof(float)* CHECK_COUNT * 2;
- for (int ii = 0; ii < mKernelCount; ii++)
- {
- CUDA_CHECK(cudaMalloc(&mAnchor[ii], AnchorLen));
- const auto& yolo = mYoloKernel[ii];
- CUDA_CHECK(cudaMemcpy(mAnchor[ii], yolo.anchors, AnchorLen, cudaMemcpyHostToDevice));
- }
- assert(d == a + length);
- }
- void YoloLayerPlugin::serialize(void* buffer) const TRT_NOEXCEPT
- {
- using namespace Tn;
- char* d = static_cast<char*>(buffer), *a = d;
- write(d, mClassCount);
- write(d, mThreadCount);
- write(d, mKernelCount);
- write(d, mYoloV5NetWidth);
- write(d, mYoloV5NetHeight);
- write(d, mMaxOutObject);
- auto kernelSize = mKernelCount * sizeof(YoloKernel);
- memcpy(d, mYoloKernel.data(), kernelSize);
- d += kernelSize;
- assert(d == a + getSerializationSize());
- }
- size_t YoloLayerPlugin::getSerializationSize() const TRT_NOEXCEPT
- {
- return sizeof(mClassCount) + sizeof(mThreadCount) + sizeof(mKernelCount) + sizeof(Yolo::YoloKernel) * mYoloKernel.size() + sizeof(mYoloV5NetWidth) + sizeof(mYoloV5NetHeight) + sizeof(mMaxOutObject);
- }
- int YoloLayerPlugin::initialize() TRT_NOEXCEPT
- {
- return 0;
- }
- Dims YoloLayerPlugin::getOutputDimensions(int index, const Dims* inputs, int nbInputDims) TRT_NOEXCEPT
- {
- //output the result to channel
- int totalsize = mMaxOutObject * sizeof(Detection) / sizeof(float);
- return Dims3(totalsize + 1, 1, 1);
- }
- // Set plugin namespace
- void YoloLayerPlugin::setPluginNamespace(const char* pluginNamespace) TRT_NOEXCEPT
- {
- mPluginNamespace = pluginNamespace;
- }
- const char* YoloLayerPlugin::getPluginNamespace() const TRT_NOEXCEPT
- {
- return mPluginNamespace;
- }
- // Return the DataType of the plugin output at the requested index
- DataType YoloLayerPlugin::getOutputDataType(int index, const nvinfer1::DataType* inputTypes, int nbInputs) const TRT_NOEXCEPT
- {
- return DataType::kFLOAT;
- }
- // Return true if output tensor is broadcast across a batch.
- bool YoloLayerPlugin::isOutputBroadcastAcrossBatch(int outputIndex, const bool* inputIsBroadcasted, int nbInputs) const TRT_NOEXCEPT
- {
- return false;
- }
- // Return true if plugin can use input that is broadcast across batch without replication.
- bool YoloLayerPlugin::canBroadcastInputAcrossBatch(int inputIndex) const TRT_NOEXCEPT
- {
- return false;
- }
- void YoloLayerPlugin::configurePlugin(const PluginTensorDesc* in, int nbInput, const PluginTensorDesc* out, int nbOutput) TRT_NOEXCEPT
- {
- }
- // Attach the plugin object to an execution context and grant the plugin the access to some context resource.
- void YoloLayerPlugin::attachToContext(cudnnContext* cudnnContext, cublasContext* cublasContext, IGpuAllocator* gpuAllocator) TRT_NOEXCEPT
- {
- }
- // Detach the plugin object from its execution context.
- void YoloLayerPlugin::detachFromContext() TRT_NOEXCEPT {}
- const char* YoloLayerPlugin::getPluginType() const TRT_NOEXCEPT
- {
- return "YoloLayer_TRT";
- }
- const char* YoloLayerPlugin::getPluginVersion() const TRT_NOEXCEPT
- {
- return "1";
- }
- void YoloLayerPlugin::destroy() TRT_NOEXCEPT
- {
- delete this;
- }
- // Clone the plugin
- IPluginV2IOExt* YoloLayerPlugin::clone() const TRT_NOEXCEPT
- {
- YoloLayerPlugin* p = new YoloLayerPlugin(mClassCount, mYoloV5NetWidth, mYoloV5NetHeight, mMaxOutObject, mYoloKernel);
- p->setPluginNamespace(mPluginNamespace);
- return p;
- }
- __device__ float Logist(float data) { return 1.0f / (1.0f + expf(-data)); };
- __global__ void CalDetection(const float *input, float *output, int noElements,
- const int netwidth, const int netheight, int maxoutobject, int yoloWidth, int yoloHeight, const float anchors[CHECK_COUNT * 2], int classes, int outputElem)
- {
- int idx = threadIdx.x + blockDim.x * blockIdx.x;
- if (idx >= noElements) return;
- int total_grid = yoloWidth * yoloHeight;
- int bnIdx = idx / total_grid;
- idx = idx - total_grid * bnIdx;
- int info_len_i = 5 + classes;
- const float* curInput = input + bnIdx * (info_len_i * total_grid * CHECK_COUNT);
- for (int k = 0; k < CHECK_COUNT; ++k) {
- float box_prob = Logist(curInput[idx + k * info_len_i * total_grid + 4 * total_grid]);
- if (box_prob < IGNORE_THRESH) continue;
- int class_id = 0;
- float max_cls_prob = 0.0;
- for (int i = 5; i < info_len_i; ++i) {
- float p = Logist(curInput[idx + k * info_len_i * total_grid + i * total_grid]);
- if (p > max_cls_prob) {
- max_cls_prob = p;
- class_id = i - 5;
- }
- }
- float *res_count = output + bnIdx * outputElem;
- int count = (int)atomicAdd(res_count, 1);
- if (count >= maxoutobject) return;
- char *data = (char*)res_count + sizeof(float) + count * sizeof(Detection);
- Detection *det = (Detection*)(data);
- int row = idx / yoloWidth;
- int col = idx % yoloWidth;
- //Location
- // pytorch:
- // y = x[i].sigmoid()
- // y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
- // y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
- // X: (sigmoid(tx) + cx)/FeaturemapW * netwidth
- det->bbox[0] = (col - 0.5f + 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 0 * total_grid])) * netwidth / yoloWidth;
- det->bbox[1] = (row - 0.5f + 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 1 * total_grid])) * netheight / yoloHeight;
- // W: (Pw * e^tw) / FeaturemapW * netwidth
- // v5: https://github.com/ultralytics/yolov5/issues/471
- det->bbox[2] = 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 2 * total_grid]);
- det->bbox[2] = det->bbox[2] * det->bbox[2] * anchors[2 * k];
- det->bbox[3] = 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 3 * total_grid]);
- det->bbox[3] = det->bbox[3] * det->bbox[3] * anchors[2 * k + 1];
- det->conf = box_prob * max_cls_prob;
- det->class_id = class_id;
- }
- }
- void YoloLayerPlugin::forwardGpu(const float* const* inputs, float *output, cudaStream_t stream, int batchSize)
- {
- int outputElem = 1 + mMaxOutObject * sizeof(Detection) / sizeof(float);
- for (int idx = 0; idx < batchSize; ++idx) {
- CUDA_CHECK(cudaMemsetAsync(output + idx * outputElem, 0, sizeof(float), stream));
- }
- int numElem = 0;
- for (unsigned int i = 0; i < mYoloKernel.size(); ++i) {
- const auto& yolo = mYoloKernel[i];
- numElem = yolo.width * yolo.height * batchSize;
- if (numElem < mThreadCount) mThreadCount = numElem;
- //printf("Net: %d %d \n", mYoloV5NetWidth, mYoloV5NetHeight);
- CalDetection << < (numElem + mThreadCount - 1) / mThreadCount, mThreadCount, 0, stream >> >
- (inputs[i], output, numElem, mYoloV5NetWidth, mYoloV5NetHeight, mMaxOutObject, yolo.width, yolo.height, (float*)mAnchor[i], mClassCount, outputElem);
- }
- }
- int YoloLayerPlugin::enqueue(int batchSize, const void* const* inputs, void* TRT_CONST_ENQUEUE* outputs, void* workspace, cudaStream_t stream) TRT_NOEXCEPT
- {
- forwardGpu((const float* const*)inputs, (float*)outputs[0], stream, batchSize);
- return 0;
- }
- PluginFieldCollection YoloPluginCreator::mFC{};
- std::vector<PluginField> YoloPluginCreator::mPluginAttributes;
- YoloPluginCreator::YoloPluginCreator()
- {
- mPluginAttributes.clear();
- mFC.nbFields = mPluginAttributes.size();
- mFC.fields = mPluginAttributes.data();
- }
- const char* YoloPluginCreator::getPluginName() const TRT_NOEXCEPT
- {
- return "YoloLayer_TRT";
- }
- const char* YoloPluginCreator::getPluginVersion() const TRT_NOEXCEPT
- {
- return "1";
- }
- const PluginFieldCollection* YoloPluginCreator::getFieldNames() TRT_NOEXCEPT
- {
- return &mFC;
- }
- IPluginV2IOExt* YoloPluginCreator::createPlugin(const char* name, const PluginFieldCollection* fc) TRT_NOEXCEPT
- {
- assert(fc->nbFields == 2);
- assert(strcmp(fc->fields[0].name, "netinfo") == 0);
- assert(strcmp(fc->fields[1].name, "kernels") == 0);
- int *p_netinfo = (int*)(fc->fields[0].data);
- int class_count = p_netinfo[0];
- int input_w = p_netinfo[1];
- int input_h = p_netinfo[2];
- int max_output_object_count = p_netinfo[3];
- std::vector<Yolo::YoloKernel> kernels(fc->fields[1].length);
- memcpy(&kernels[0], fc->fields[1].data, kernels.size() * sizeof(Yolo::YoloKernel));
- YoloLayerPlugin* obj = new YoloLayerPlugin(class_count, input_w, input_h, max_output_object_count, kernels);
- obj->setPluginNamespace(mNamespace.c_str());
- return obj;
- }
- IPluginV2IOExt* YoloPluginCreator::deserializePlugin(const char* name, const void* serialData, size_t serialLength) TRT_NOEXCEPT
- {
- // This object will be deleted when the network is destroyed, which will
- // call YoloLayerPlugin::destroy()
- YoloLayerPlugin* obj = new YoloLayerPlugin(serialData, serialLength);
- obj->setPluginNamespace(mNamespace.c_str());
- return obj;
- }
- }
|