123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_PHOTO_HPP
- #define OPENCV_PHOTO_HPP
- #include "opencv2/core.hpp"
- #include "opencv2/imgproc.hpp"
- /**
- @defgroup photo Computational Photography
- This module includes photo processing algorithms
- @{
- @defgroup photo_inpaint Inpainting
- @defgroup photo_denoise Denoising
- @defgroup photo_hdr HDR imaging
- This section describes high dynamic range imaging algorithms namely tonemapping, exposure alignment,
- camera calibration with multiple exposures and exposure fusion.
- @defgroup photo_decolor Contrast Preserving Decolorization
- Useful links:
- http://www.cse.cuhk.edu.hk/leojia/projects/color2gray/index.html
- @defgroup photo_clone Seamless Cloning
- Useful links:
- https://www.learnopencv.com/seamless-cloning-using-opencv-python-cpp
- @defgroup photo_render Non-Photorealistic Rendering
- Useful links:
- http://www.inf.ufrgs.br/~eslgastal/DomainTransform
- https://www.learnopencv.com/non-photorealistic-rendering-using-opencv-python-c/
- @}
- */
- namespace cv
- {
- //! @addtogroup photo
- //! @{
- //! @addtogroup photo_inpaint
- //! @{
- //! the inpainting algorithm
- enum
- {
- INPAINT_NS = 0, //!< Use Navier-Stokes based method
- INPAINT_TELEA = 1 //!< Use the algorithm proposed by Alexandru Telea @cite Telea04
- };
- /** @brief Restores the selected region in an image using the region neighborhood.
- @param src Input 8-bit, 16-bit unsigned or 32-bit float 1-channel or 8-bit 3-channel image.
- @param inpaintMask Inpainting mask, 8-bit 1-channel image. Non-zero pixels indicate the area that
- needs to be inpainted.
- @param dst Output image with the same size and type as src .
- @param inpaintRadius Radius of a circular neighborhood of each point inpainted that is considered
- by the algorithm.
- @param flags Inpainting method that could be cv::INPAINT_NS or cv::INPAINT_TELEA
- The function reconstructs the selected image area from the pixel near the area boundary. The
- function may be used to remove dust and scratches from a scanned photo, or to remove undesirable
- objects from still images or video. See <http://en.wikipedia.org/wiki/Inpainting> for more details.
- @note
- - An example using the inpainting technique can be found at
- opencv_source_code/samples/cpp/inpaint.cpp
- - (Python) An example using the inpainting technique can be found at
- opencv_source_code/samples/python/inpaint.py
- */
- CV_EXPORTS_W void inpaint( InputArray src, InputArray inpaintMask,
- OutputArray dst, double inpaintRadius, int flags );
- //! @} photo_inpaint
- //! @addtogroup photo_denoise
- //! @{
- /** @brief Perform image denoising using Non-local Means Denoising algorithm
- <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
- optimizations. Noise expected to be a gaussian white noise
- @param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
- @param dst Output image with the same size and type as src .
- @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- Should be odd. Recommended value 7 pixels
- @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
- given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- denoising time. Recommended value 21 pixels
- @param h Parameter regulating filter strength. Big h value perfectly removes noise but also
- removes image details, smaller h value preserves details but also preserves some noise
- This function expected to be applied to grayscale images. For colored images look at
- fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
- image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
- image to CIELAB colorspace and then separately denoise L and AB components with different h
- parameter.
- */
- CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, float h = 3,
- int templateWindowSize = 7, int searchWindowSize = 21);
- /** @brief Perform image denoising using Non-local Means Denoising algorithm
- <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
- optimizations. Noise expected to be a gaussian white noise
- @param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
- 2-channel, 3-channel or 4-channel image.
- @param dst Output image with the same size and type as src .
- @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- Should be odd. Recommended value 7 pixels
- @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
- given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- denoising time. Recommended value 21 pixels
- @param h Array of parameters regulating filter strength, either one
- parameter applied to all channels or one per channel in dst. Big h value
- perfectly removes noise but also removes image details, smaller h
- value preserves details but also preserves some noise
- @param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
- This function expected to be applied to grayscale images. For colored images look at
- fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
- image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
- image to CIELAB colorspace and then separately denoise L and AB components with different h
- parameter.
- */
- CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst,
- const std::vector<float>& h,
- int templateWindowSize = 7, int searchWindowSize = 21,
- int normType = NORM_L2);
- /** @brief Modification of fastNlMeansDenoising function for colored images
- @param src Input 8-bit 3-channel image.
- @param dst Output image with the same size and type as src .
- @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- Should be odd. Recommended value 7 pixels
- @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
- given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- denoising time. Recommended value 21 pixels
- @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
- removes noise but also removes image details, smaller h value preserves details but also preserves
- some noise
- @param hColor The same as h but for color components. For most images value equals 10
- will be enough to remove colored noise and do not distort colors
- The function converts image to CIELAB colorspace and then separately denoise L and AB components
- with given h parameters using fastNlMeansDenoising function.
- */
- CV_EXPORTS_W void fastNlMeansDenoisingColored( InputArray src, OutputArray dst,
- float h = 3, float hColor = 3,
- int templateWindowSize = 7, int searchWindowSize = 21);
- /** @brief Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
- captured in small period of time. For example video. This version of the function is for grayscale
- images or for manual manipulation with colorspaces. For more details see
- <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
- @param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or
- 4-channel images sequence. All images should have the same type and
- size.
- @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
- @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
- be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
- imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
- srcImgs[imgToDenoiseIndex] image.
- @param dst Output image with the same size and type as srcImgs images.
- @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- Should be odd. Recommended value 7 pixels
- @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
- given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- denoising time. Recommended value 21 pixels
- @param h Parameter regulating filter strength. Bigger h value
- perfectly removes noise but also removes image details, smaller h
- value preserves details but also preserves some noise
- */
- CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst,
- int imgToDenoiseIndex, int temporalWindowSize,
- float h = 3, int templateWindowSize = 7, int searchWindowSize = 21);
- /** @brief Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
- captured in small period of time. For example video. This version of the function is for grayscale
- images or for manual manipulation with colorspaces. For more details see
- <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
- @param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
- 2-channel, 3-channel or 4-channel images sequence. All images should
- have the same type and size.
- @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
- @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
- be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
- imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
- srcImgs[imgToDenoiseIndex] image.
- @param dst Output image with the same size and type as srcImgs images.
- @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- Should be odd. Recommended value 7 pixels
- @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
- given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- denoising time. Recommended value 21 pixels
- @param h Array of parameters regulating filter strength, either one
- parameter applied to all channels or one per channel in dst. Big h value
- perfectly removes noise but also removes image details, smaller h
- value preserves details but also preserves some noise
- @param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
- */
- CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst,
- int imgToDenoiseIndex, int temporalWindowSize,
- const std::vector<float>& h,
- int templateWindowSize = 7, int searchWindowSize = 21,
- int normType = NORM_L2);
- /** @brief Modification of fastNlMeansDenoisingMulti function for colored images sequences
- @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and
- size.
- @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
- @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
- be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
- imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
- srcImgs[imgToDenoiseIndex] image.
- @param dst Output image with the same size and type as srcImgs images.
- @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- Should be odd. Recommended value 7 pixels
- @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
- given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- denoising time. Recommended value 21 pixels
- @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
- removes noise but also removes image details, smaller h value preserves details but also preserves
- some noise.
- @param hColor The same as h but for color components.
- The function converts images to CIELAB colorspace and then separately denoise L and AB components
- with given h parameters using fastNlMeansDenoisingMulti function.
- */
- CV_EXPORTS_W void fastNlMeansDenoisingColoredMulti( InputArrayOfArrays srcImgs, OutputArray dst,
- int imgToDenoiseIndex, int temporalWindowSize,
- float h = 3, float hColor = 3,
- int templateWindowSize = 7, int searchWindowSize = 21);
- /** @brief Primal-dual algorithm is an algorithm for solving special types of variational problems (that is,
- finding a function to minimize some functional). As the image denoising, in particular, may be seen
- as the variational problem, primal-dual algorithm then can be used to perform denoising and this is
- exactly what is implemented.
- It should be noted, that this implementation was taken from the July 2013 blog entry
- @cite MA13 , which also contained (slightly more general) ready-to-use source code on Python.
- Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end
- of July 2013 and finally it was slightly adapted by later authors.
- Although the thorough discussion and justification of the algorithm involved may be found in
- @cite ChambolleEtAl, it might make sense to skim over it here, following @cite MA13 . To begin
- with, we consider the 1-byte gray-level images as the functions from the rectangular domain of
- pixels (it may be seen as set
- \f$\left\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid 1\leq x\leq n,\;1\leq y\leq m\right\}\f$ for some
- \f$m,\;n\in\mathbb{N}\f$) into \f$\{0,1,\dots,255\}\f$. We shall denote the noised images as \f$f_i\f$ and with
- this view, given some image \f$x\f$ of the same size, we may measure how bad it is by the formula
- \f[\left\|\left\|\nabla x\right\|\right\| + \lambda\sum_i\left\|\left\|x-f_i\right\|\right\|\f]
- \f$\|\|\cdot\|\|\f$ here denotes \f$L_2\f$-norm and as you see, the first addend states that we want our
- image to be smooth (ideally, having zero gradient, thus being constant) and the second states that
- we want our result to be close to the observations we've got. If we treat \f$x\f$ as a function, this is
- exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play.
- @param observations This array should contain one or more noised versions of the image that is to
- be restored.
- @param result Here the denoised image will be stored. There is no need to do pre-allocation of
- storage space, as it will be automatically allocated, if necessary.
- @param lambda Corresponds to \f$\lambda\f$ in the formulas above. As it is enlarged, the smooth
- (blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly
- speaking, as it becomes smaller, the result will be more blur but more sever outliers will be
- removed.
- @param niters Number of iterations that the algorithm will run. Of course, as more iterations as
- better, but it is hard to quantitatively refine this statement, so just use the default and
- increase it if the results are poor.
- */
- CV_EXPORTS_W void denoise_TVL1(const std::vector<Mat>& observations,Mat& result, double lambda=1.0, int niters=30);
- //! @} photo_denoise
- //! @addtogroup photo_hdr
- //! @{
- enum { LDR_SIZE = 256 };
- /** @brief Base class for tonemapping algorithms - tools that are used to map HDR image to 8-bit range.
- */
- class CV_EXPORTS_W Tonemap : public Algorithm
- {
- public:
- /** @brief Tonemaps image
- @param src source image - CV_32FC3 Mat (float 32 bits 3 channels)
- @param dst destination image - CV_32FC3 Mat with values in [0, 1] range
- */
- CV_WRAP virtual void process(InputArray src, OutputArray dst) = 0;
- CV_WRAP virtual float getGamma() const = 0;
- CV_WRAP virtual void setGamma(float gamma) = 0;
- };
- /** @brief Creates simple linear mapper with gamma correction
- @param gamma positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma
- equal to 2.2f is suitable for most displays.
- Generally gamma \> 1 brightens the image and gamma \< 1 darkens it.
- */
- CV_EXPORTS_W Ptr<Tonemap> createTonemap(float gamma = 1.0f);
- /** @brief Adaptive logarithmic mapping is a fast global tonemapping algorithm that scales the image in
- logarithmic domain.
- Since it's a global operator the same function is applied to all the pixels, it is controlled by the
- bias parameter.
- Optional saturation enhancement is possible as described in @cite FL02 .
- For more information see @cite DM03 .
- */
- class CV_EXPORTS_W TonemapDrago : public Tonemap
- {
- public:
- CV_WRAP virtual float getSaturation() const = 0;
- CV_WRAP virtual void setSaturation(float saturation) = 0;
- CV_WRAP virtual float getBias() const = 0;
- CV_WRAP virtual void setBias(float bias) = 0;
- };
- /** @brief Creates TonemapDrago object
- @param gamma gamma value for gamma correction. See createTonemap
- @param saturation positive saturation enhancement value. 1.0 preserves saturation, values greater
- than 1 increase saturation and values less than 1 decrease it.
- @param bias value for bias function in [0, 1] range. Values from 0.7 to 0.9 usually give best
- results, default value is 0.85.
- */
- CV_EXPORTS_W Ptr<TonemapDrago> createTonemapDrago(float gamma = 1.0f, float saturation = 1.0f, float bias = 0.85f);
- /** @brief This is a global tonemapping operator that models human visual system.
- Mapping function is controlled by adaptation parameter, that is computed using light adaptation and
- color adaptation.
- For more information see @cite RD05 .
- */
- class CV_EXPORTS_W TonemapReinhard : public Tonemap
- {
- public:
- CV_WRAP virtual float getIntensity() const = 0;
- CV_WRAP virtual void setIntensity(float intensity) = 0;
- CV_WRAP virtual float getLightAdaptation() const = 0;
- CV_WRAP virtual void setLightAdaptation(float light_adapt) = 0;
- CV_WRAP virtual float getColorAdaptation() const = 0;
- CV_WRAP virtual void setColorAdaptation(float color_adapt) = 0;
- };
- /** @brief Creates TonemapReinhard object
- @param gamma gamma value for gamma correction. See createTonemap
- @param intensity result intensity in [-8, 8] range. Greater intensity produces brighter results.
- @param light_adapt light adaptation in [0, 1] range. If 1 adaptation is based only on pixel
- value, if 0 it's global, otherwise it's a weighted mean of this two cases.
- @param color_adapt chromatic adaptation in [0, 1] range. If 1 channels are treated independently,
- if 0 adaptation level is the same for each channel.
- */
- CV_EXPORTS_W Ptr<TonemapReinhard>
- createTonemapReinhard(float gamma = 1.0f, float intensity = 0.0f, float light_adapt = 1.0f, float color_adapt = 0.0f);
- /** @brief This algorithm transforms image to contrast using gradients on all levels of gaussian pyramid,
- transforms contrast values to HVS response and scales the response. After this the image is
- reconstructed from new contrast values.
- For more information see @cite MM06 .
- */
- class CV_EXPORTS_W TonemapMantiuk : public Tonemap
- {
- public:
- CV_WRAP virtual float getScale() const = 0;
- CV_WRAP virtual void setScale(float scale) = 0;
- CV_WRAP virtual float getSaturation() const = 0;
- CV_WRAP virtual void setSaturation(float saturation) = 0;
- };
- /** @brief Creates TonemapMantiuk object
- @param gamma gamma value for gamma correction. See createTonemap
- @param scale contrast scale factor. HVS response is multiplied by this parameter, thus compressing
- dynamic range. Values from 0.6 to 0.9 produce best results.
- @param saturation saturation enhancement value. See createTonemapDrago
- */
- CV_EXPORTS_W Ptr<TonemapMantiuk>
- createTonemapMantiuk(float gamma = 1.0f, float scale = 0.7f, float saturation = 1.0f);
- /** @brief The base class for algorithms that align images of the same scene with different exposures
- */
- class CV_EXPORTS_W AlignExposures : public Algorithm
- {
- public:
- /** @brief Aligns images
- @param src vector of input images
- @param dst vector of aligned images
- @param times vector of exposure time values for each image
- @param response 256x1 matrix with inverse camera response function for each pixel value, it should
- have the same number of channels as images.
- */
- CV_WRAP virtual void process(InputArrayOfArrays src, std::vector<Mat>& dst,
- InputArray times, InputArray response) = 0;
- };
- /** @brief This algorithm converts images to median threshold bitmaps (1 for pixels brighter than median
- luminance and 0 otherwise) and than aligns the resulting bitmaps using bit operations.
- It is invariant to exposure, so exposure values and camera response are not necessary.
- In this implementation new image regions are filled with zeros.
- For more information see @cite GW03 .
- */
- class CV_EXPORTS_W AlignMTB : public AlignExposures
- {
- public:
- CV_WRAP virtual void process(InputArrayOfArrays src, std::vector<Mat>& dst,
- InputArray times, InputArray response) CV_OVERRIDE = 0;
- /** @brief Short version of process, that doesn't take extra arguments.
- @param src vector of input images
- @param dst vector of aligned images
- */
- CV_WRAP virtual void process(InputArrayOfArrays src, std::vector<Mat>& dst) = 0;
- /** @brief Calculates shift between two images, i. e. how to shift the second image to correspond it with the
- first.
- @param img0 first image
- @param img1 second image
- */
- CV_WRAP virtual Point calculateShift(InputArray img0, InputArray img1) = 0;
- /** @brief Helper function, that shift Mat filling new regions with zeros.
- @param src input image
- @param dst result image
- @param shift shift value
- */
- CV_WRAP virtual void shiftMat(InputArray src, OutputArray dst, const Point shift) = 0;
- /** @brief Computes median threshold and exclude bitmaps of given image.
- @param img input image
- @param tb median threshold bitmap
- @param eb exclude bitmap
- */
- CV_WRAP virtual void computeBitmaps(InputArray img, OutputArray tb, OutputArray eb) = 0;
- CV_WRAP virtual int getMaxBits() const = 0;
- CV_WRAP virtual void setMaxBits(int max_bits) = 0;
- CV_WRAP virtual int getExcludeRange() const = 0;
- CV_WRAP virtual void setExcludeRange(int exclude_range) = 0;
- CV_WRAP virtual bool getCut() const = 0;
- CV_WRAP virtual void setCut(bool value) = 0;
- };
- /** @brief Creates AlignMTB object
- @param max_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
- usually good enough (31 and 63 pixels shift respectively).
- @param exclude_range range for exclusion bitmap that is constructed to suppress noise around the
- median value.
- @param cut if true cuts images, otherwise fills the new regions with zeros.
- */
- CV_EXPORTS_W Ptr<AlignMTB> createAlignMTB(int max_bits = 6, int exclude_range = 4, bool cut = true);
- /** @brief The base class for camera response calibration algorithms.
- */
- class CV_EXPORTS_W CalibrateCRF : public Algorithm
- {
- public:
- /** @brief Recovers inverse camera response.
- @param src vector of input images
- @param dst 256x1 matrix with inverse camera response function
- @param times vector of exposure time values for each image
- */
- CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0;
- };
- /** @brief Inverse camera response function is extracted for each brightness value by minimizing an objective
- function as linear system. Objective function is constructed using pixel values on the same position
- in all images, extra term is added to make the result smoother.
- For more information see @cite DM97 .
- */
- class CV_EXPORTS_W CalibrateDebevec : public CalibrateCRF
- {
- public:
- CV_WRAP virtual float getLambda() const = 0;
- CV_WRAP virtual void setLambda(float lambda) = 0;
- CV_WRAP virtual int getSamples() const = 0;
- CV_WRAP virtual void setSamples(int samples) = 0;
- CV_WRAP virtual bool getRandom() const = 0;
- CV_WRAP virtual void setRandom(bool random) = 0;
- };
- /** @brief Creates CalibrateDebevec object
- @param samples number of pixel locations to use
- @param lambda smoothness term weight. Greater values produce smoother results, but can alter the
- response.
- @param random if true sample pixel locations are chosen at random, otherwise they form a
- rectangular grid.
- */
- CV_EXPORTS_W Ptr<CalibrateDebevec> createCalibrateDebevec(int samples = 70, float lambda = 10.0f, bool random = false);
- /** @brief Inverse camera response function is extracted for each brightness value by minimizing an objective
- function as linear system. This algorithm uses all image pixels.
- For more information see @cite RB99 .
- */
- class CV_EXPORTS_W CalibrateRobertson : public CalibrateCRF
- {
- public:
- CV_WRAP virtual int getMaxIter() const = 0;
- CV_WRAP virtual void setMaxIter(int max_iter) = 0;
- CV_WRAP virtual float getThreshold() const = 0;
- CV_WRAP virtual void setThreshold(float threshold) = 0;
- CV_WRAP virtual Mat getRadiance() const = 0;
- };
- /** @brief Creates CalibrateRobertson object
- @param max_iter maximal number of Gauss-Seidel solver iterations.
- @param threshold target difference between results of two successive steps of the minimization.
- */
- CV_EXPORTS_W Ptr<CalibrateRobertson> createCalibrateRobertson(int max_iter = 30, float threshold = 0.01f);
- /** @brief The base class algorithms that can merge exposure sequence to a single image.
- */
- class CV_EXPORTS_W MergeExposures : public Algorithm
- {
- public:
- /** @brief Merges images.
- @param src vector of input images
- @param dst result image
- @param times vector of exposure time values for each image
- @param response 256x1 matrix with inverse camera response function for each pixel value, it should
- have the same number of channels as images.
- */
- CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst,
- InputArray times, InputArray response) = 0;
- };
- /** @brief The resulting HDR image is calculated as weighted average of the exposures considering exposure
- values and camera response.
- For more information see @cite DM97 .
- */
- class CV_EXPORTS_W MergeDebevec : public MergeExposures
- {
- public:
- CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst,
- InputArray times, InputArray response) CV_OVERRIDE = 0;
- CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0;
- };
- /** @brief Creates MergeDebevec object
- */
- CV_EXPORTS_W Ptr<MergeDebevec> createMergeDebevec();
- /** @brief Pixels are weighted using contrast, saturation and well-exposedness measures, than images are
- combined using laplacian pyramids.
- The resulting image weight is constructed as weighted average of contrast, saturation and
- well-exposedness measures.
- The resulting image doesn't require tonemapping and can be converted to 8-bit image by multiplying
- by 255, but it's recommended to apply gamma correction and/or linear tonemapping.
- For more information see @cite MK07 .
- */
- class CV_EXPORTS_W MergeMertens : public MergeExposures
- {
- public:
- CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst,
- InputArray times, InputArray response) CV_OVERRIDE = 0;
- /** @brief Short version of process, that doesn't take extra arguments.
- @param src vector of input images
- @param dst result image
- */
- CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst) = 0;
- CV_WRAP virtual float getContrastWeight() const = 0;
- CV_WRAP virtual void setContrastWeight(float contrast_weiht) = 0;
- CV_WRAP virtual float getSaturationWeight() const = 0;
- CV_WRAP virtual void setSaturationWeight(float saturation_weight) = 0;
- CV_WRAP virtual float getExposureWeight() const = 0;
- CV_WRAP virtual void setExposureWeight(float exposure_weight) = 0;
- };
- /** @brief Creates MergeMertens object
- @param contrast_weight contrast measure weight. See MergeMertens.
- @param saturation_weight saturation measure weight
- @param exposure_weight well-exposedness measure weight
- */
- CV_EXPORTS_W Ptr<MergeMertens>
- createMergeMertens(float contrast_weight = 1.0f, float saturation_weight = 1.0f, float exposure_weight = 0.0f);
- /** @brief The resulting HDR image is calculated as weighted average of the exposures considering exposure
- values and camera response.
- For more information see @cite RB99 .
- */
- class CV_EXPORTS_W MergeRobertson : public MergeExposures
- {
- public:
- CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst,
- InputArray times, InputArray response) CV_OVERRIDE = 0;
- CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0;
- };
- /** @brief Creates MergeRobertson object
- */
- CV_EXPORTS_W Ptr<MergeRobertson> createMergeRobertson();
- //! @} photo_hdr
- //! @addtogroup photo_decolor
- //! @{
- /** @brief Transforms a color image to a grayscale image. It is a basic tool in digital printing, stylized
- black-and-white photograph rendering, and in many single channel image processing applications
- @cite CL12 .
- @param src Input 8-bit 3-channel image.
- @param grayscale Output 8-bit 1-channel image.
- @param color_boost Output 8-bit 3-channel image.
- This function is to be applied on color images.
- */
- CV_EXPORTS_W void decolor( InputArray src, OutputArray grayscale, OutputArray color_boost);
- //! @} photo_decolor
- //! @addtogroup photo_clone
- //! @{
- //! seamlessClone algorithm flags
- enum
- {
- /** The power of the method is fully expressed when inserting objects with complex outlines into a new background*/
- NORMAL_CLONE = 1,
- /** The classic method, color-based selection and alpha masking might be time consuming and often leaves an undesirable
- halo. Seamless cloning, even averaged with the original image, is not effective. Mixed seamless cloning based on a loose selection proves effective.*/
- MIXED_CLONE = 2,
- /** Monochrome transfer allows the user to easily replace certain features of one object by alternative features.*/
- MONOCHROME_TRANSFER = 3};
- /** @example samples/cpp/tutorial_code/photo/seamless_cloning/cloning_demo.cpp
- An example using seamlessClone function
- */
- /** @brief Image editing tasks concern either global changes (color/intensity corrections, filters,
- deformations) or local changes concerned to a selection. Here we are interested in achieving local
- changes, ones that are restricted to a region manually selected (ROI), in a seamless and effortless
- manner. The extent of the changes ranges from slight distortions to complete replacement by novel
- content @cite PM03 .
- @param src Input 8-bit 3-channel image.
- @param dst Input 8-bit 3-channel image.
- @param mask Input 8-bit 1 or 3-channel image.
- @param p Point in dst image where object is placed.
- @param blend Output image with the same size and type as dst.
- @param flags Cloning method that could be cv::NORMAL_CLONE, cv::MIXED_CLONE or cv::MONOCHROME_TRANSFER
- */
- CV_EXPORTS_W void seamlessClone( InputArray src, InputArray dst, InputArray mask, Point p,
- OutputArray blend, int flags);
- /** @brief Given an original color image, two differently colored versions of this image can be mixed
- seamlessly.
- @param src Input 8-bit 3-channel image.
- @param mask Input 8-bit 1 or 3-channel image.
- @param dst Output image with the same size and type as src .
- @param red_mul R-channel multiply factor.
- @param green_mul G-channel multiply factor.
- @param blue_mul B-channel multiply factor.
- Multiplication factor is between .5 to 2.5.
- */
- CV_EXPORTS_W void colorChange(InputArray src, InputArray mask, OutputArray dst, float red_mul = 1.0f,
- float green_mul = 1.0f, float blue_mul = 1.0f);
- /** @brief Applying an appropriate non-linear transformation to the gradient field inside the selection and
- then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.
- @param src Input 8-bit 3-channel image.
- @param mask Input 8-bit 1 or 3-channel image.
- @param dst Output image with the same size and type as src.
- @param alpha Value ranges between 0-2.
- @param beta Value ranges between 0-2.
- This is useful to highlight under-exposed foreground objects or to reduce specular reflections.
- */
- CV_EXPORTS_W void illuminationChange(InputArray src, InputArray mask, OutputArray dst,
- float alpha = 0.2f, float beta = 0.4f);
- /** @brief By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
- washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used.
- @param src Input 8-bit 3-channel image.
- @param mask Input 8-bit 1 or 3-channel image.
- @param dst Output image with the same size and type as src.
- @param low_threshold %Range from 0 to 100.
- @param high_threshold Value \> 100.
- @param kernel_size The size of the Sobel kernel to be used.
- @note
- The algorithm assumes that the color of the source image is close to that of the destination. This
- assumption means that when the colors don't match, the source image color gets tinted toward the
- color of the destination image.
- */
- CV_EXPORTS_W void textureFlattening(InputArray src, InputArray mask, OutputArray dst,
- float low_threshold = 30, float high_threshold = 45,
- int kernel_size = 3);
- //! @} photo_clone
- //! @addtogroup photo_render
- //! @{
- //! Edge preserving filters
- enum
- {
- RECURS_FILTER = 1, //!< Recursive Filtering
- NORMCONV_FILTER = 2 //!< Normalized Convolution Filtering
- };
- /** @brief Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
- filters are used in many different applications @cite EM11 .
- @param src Input 8-bit 3-channel image.
- @param dst Output 8-bit 3-channel image.
- @param flags Edge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTER
- @param sigma_s %Range between 0 to 200.
- @param sigma_r %Range between 0 to 1.
- */
- CV_EXPORTS_W void edgePreservingFilter(InputArray src, OutputArray dst, int flags = 1,
- float sigma_s = 60, float sigma_r = 0.4f);
- /** @brief This filter enhances the details of a particular image.
- @param src Input 8-bit 3-channel image.
- @param dst Output image with the same size and type as src.
- @param sigma_s %Range between 0 to 200.
- @param sigma_r %Range between 0 to 1.
- */
- CV_EXPORTS_W void detailEnhance(InputArray src, OutputArray dst, float sigma_s = 10,
- float sigma_r = 0.15f);
- /** @example samples/cpp/tutorial_code/photo/non_photorealistic_rendering/npr_demo.cpp
- An example using non-photorealistic line drawing functions
- */
- /** @brief Pencil-like non-photorealistic line drawing
- @param src Input 8-bit 3-channel image.
- @param dst1 Output 8-bit 1-channel image.
- @param dst2 Output image with the same size and type as src.
- @param sigma_s %Range between 0 to 200.
- @param sigma_r %Range between 0 to 1.
- @param shade_factor %Range between 0 to 0.1.
- */
- CV_EXPORTS_W void pencilSketch(InputArray src, OutputArray dst1, OutputArray dst2,
- float sigma_s = 60, float sigma_r = 0.07f, float shade_factor = 0.02f);
- /** @brief Stylization aims to produce digital imagery with a wide variety of effects not focused on
- photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low
- contrast while preserving, or enhancing, high-contrast features.
- @param src Input 8-bit 3-channel image.
- @param dst Output image with the same size and type as src.
- @param sigma_s %Range between 0 to 200.
- @param sigma_r %Range between 0 to 1.
- */
- CV_EXPORTS_W void stylization(InputArray src, OutputArray dst, float sigma_s = 60,
- float sigma_r = 0.45f);
- //! @} photo_render
- //! @} photo
- } // cv
- #endif
|