123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_OBJDETECT_HPP
- #define OPENCV_OBJDETECT_HPP
- #include "opencv2/core.hpp"
- /**
- @defgroup objdetect Object Detection
- Haar Feature-based Cascade Classifier for Object Detection
- ----------------------------------------------------------
- The object detector described below has been initially proposed by Paul Viola @cite Viola01 and
- improved by Rainer Lienhart @cite Lienhart02 .
- First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is
- trained with a few hundred sample views of a particular object (i.e., a face or a car), called
- positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary
- images of the same size.
- After a classifier is trained, it can be applied to a region of interest (of the same size as used
- during the training) in an input image. The classifier outputs a "1" if the region is likely to show
- the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can
- move the search window across the image and check every location using the classifier. The
- classifier is designed so that it can be easily "resized" in order to be able to find the objects of
- interest at different sizes, which is more efficient than resizing the image itself. So, to find an
- object of an unknown size in the image the scan procedure should be done several times at different
- scales.
- The word "cascade" in the classifier name means that the resultant classifier consists of several
- simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some
- stage the candidate is rejected or all the stages are passed. The word "boosted" means that the
- classifiers at every stage of the cascade are complex themselves and they are built out of basic
- classifiers using one of four different boosting techniques (weighted voting). Currently Discrete
- Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are
- decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic
- classifiers, and are calculated as described below. The current algorithm uses the following
- Haar-like features:
- ![image](pics/haarfeatures.png)
- The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within
- the region of interest and the scale (this scale is not the same as the scale used at the detection
- stage, though these two scales are multiplied). For example, in the case of the third line feature
- (2c) the response is calculated as the difference between the sum of image pixels under the
- rectangle covering the whole feature (including the two white stripes and the black stripe in the
- middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to
- compensate for the differences in the size of areas. The sums of pixel values over a rectangular
- regions are calculated rapidly using integral images (see below and the integral description).
- To see the object detector at work, have a look at the facedetect demo:
- <https://github.com/opencv/opencv/tree/master/samples/cpp/dbt_face_detection.cpp>
- The following reference is for the detection part only. There is a separate application called
- opencv_traincascade that can train a cascade of boosted classifiers from a set of samples.
- @note In the new C++ interface it is also possible to use LBP (local binary pattern) features in
- addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection
- using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at
- <http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf>
- @{
- @defgroup objdetect_c C API
- @}
- */
- typedef struct CvHaarClassifierCascade CvHaarClassifierCascade;
- namespace cv
- {
- //! @addtogroup objdetect
- //! @{
- ///////////////////////////// Object Detection ////////////////////////////
- //! class for grouping object candidates, detected by Cascade Classifier, HOG etc.
- //! instance of the class is to be passed to cv::partition (see cxoperations.hpp)
- class CV_EXPORTS SimilarRects
- {
- public:
- SimilarRects(double _eps) : eps(_eps) {}
- inline bool operator()(const Rect& r1, const Rect& r2) const
- {
- double delta = eps * ((std::min)(r1.width, r2.width) + (std::min)(r1.height, r2.height)) * 0.5;
- return std::abs(r1.x - r2.x) <= delta &&
- std::abs(r1.y - r2.y) <= delta &&
- std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
- std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
- }
- double eps;
- };
- /** @brief Groups the object candidate rectangles.
- @param rectList Input/output vector of rectangles. Output vector includes retained and grouped
- rectangles. (The Python list is not modified in place.)
- @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a
- group of rectangles to retain it.
- @param eps Relative difference between sides of the rectangles to merge them into a group.
- The function is a wrapper for the generic function partition . It clusters all the input rectangles
- using the rectangle equivalence criteria that combines rectangles with similar sizes and similar
- locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If
- \f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small
- clusters containing less than or equal to groupThreshold rectangles are rejected. In each other
- cluster, the average rectangle is computed and put into the output rectangle list.
- */
- CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2);
- /** @overload */
- CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights,
- int groupThreshold, double eps = 0.2);
- /** @overload */
- CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold,
- double eps, std::vector<int>* weights, std::vector<double>* levelWeights );
- /** @overload */
- CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels,
- std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2);
- /** @overload */
- CV_EXPORTS void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights,
- std::vector<double>& foundScales,
- double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
- template<> struct DefaultDeleter<CvHaarClassifierCascade>{ CV_EXPORTS void operator ()(CvHaarClassifierCascade* obj) const; };
- enum { CASCADE_DO_CANNY_PRUNING = 1,
- CASCADE_SCALE_IMAGE = 2,
- CASCADE_FIND_BIGGEST_OBJECT = 4,
- CASCADE_DO_ROUGH_SEARCH = 8
- };
- class CV_EXPORTS_W BaseCascadeClassifier : public Algorithm
- {
- public:
- virtual ~BaseCascadeClassifier();
- virtual bool empty() const CV_OVERRIDE = 0;
- virtual bool load( const String& filename ) = 0;
- virtual void detectMultiScale( InputArray image,
- CV_OUT std::vector<Rect>& objects,
- double scaleFactor,
- int minNeighbors, int flags,
- Size minSize, Size maxSize ) = 0;
- virtual void detectMultiScale( InputArray image,
- CV_OUT std::vector<Rect>& objects,
- CV_OUT std::vector<int>& numDetections,
- double scaleFactor,
- int minNeighbors, int flags,
- Size minSize, Size maxSize ) = 0;
- virtual void detectMultiScale( InputArray image,
- CV_OUT std::vector<Rect>& objects,
- CV_OUT std::vector<int>& rejectLevels,
- CV_OUT std::vector<double>& levelWeights,
- double scaleFactor,
- int minNeighbors, int flags,
- Size minSize, Size maxSize,
- bool outputRejectLevels ) = 0;
- virtual bool isOldFormatCascade() const = 0;
- virtual Size getOriginalWindowSize() const = 0;
- virtual int getFeatureType() const = 0;
- virtual void* getOldCascade() = 0;
- class CV_EXPORTS MaskGenerator
- {
- public:
- virtual ~MaskGenerator() {}
- virtual Mat generateMask(const Mat& src)=0;
- virtual void initializeMask(const Mat& /*src*/) { }
- };
- virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) = 0;
- virtual Ptr<MaskGenerator> getMaskGenerator() = 0;
- };
- /** @example samples/cpp/facedetect.cpp
- This program demonstrates usage of the Cascade classifier class
- \image html Cascade_Classifier_Tutorial_Result_Haar.jpg "Sample screenshot" width=321 height=254
- */
- /** @brief Cascade classifier class for object detection.
- */
- class CV_EXPORTS_W CascadeClassifier
- {
- public:
- CV_WRAP CascadeClassifier();
- /** @brief Loads a classifier from a file.
- @param filename Name of the file from which the classifier is loaded.
- */
- CV_WRAP CascadeClassifier(const String& filename);
- ~CascadeClassifier();
- /** @brief Checks whether the classifier has been loaded.
- */
- CV_WRAP bool empty() const;
- /** @brief Loads a classifier from a file.
- @param filename Name of the file from which the classifier is loaded. The file may contain an old
- HAAR classifier trained by the haartraining application or a new cascade classifier trained by the
- traincascade application.
- */
- CV_WRAP bool load( const String& filename );
- /** @brief Reads a classifier from a FileStorage node.
- @note The file may contain a new cascade classifier (trained traincascade application) only.
- */
- CV_WRAP bool read( const FileNode& node );
- /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
- of rectangles.
- @param image Matrix of the type CV_8U containing an image where objects are detected.
- @param objects Vector of rectangles where each rectangle contains the detected object, the
- rectangles may be partially outside the original image.
- @param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
- @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
- to retain it.
- @param flags Parameter with the same meaning for an old cascade as in the function
- cvHaarDetectObjects. It is not used for a new cascade.
- @param minSize Minimum possible object size. Objects smaller than that are ignored.
- @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale.
- The function is parallelized with the TBB library.
- @note
- - (Python) A face detection example using cascade classifiers can be found at
- opencv_source_code/samples/python/facedetect.py
- */
- CV_WRAP void detectMultiScale( InputArray image,
- CV_OUT std::vector<Rect>& objects,
- double scaleFactor = 1.1,
- int minNeighbors = 3, int flags = 0,
- Size minSize = Size(),
- Size maxSize = Size() );
- /** @overload
- @param image Matrix of the type CV_8U containing an image where objects are detected.
- @param objects Vector of rectangles where each rectangle contains the detected object, the
- rectangles may be partially outside the original image.
- @param numDetections Vector of detection numbers for the corresponding objects. An object's number
- of detections is the number of neighboring positively classified rectangles that were joined
- together to form the object.
- @param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
- @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
- to retain it.
- @param flags Parameter with the same meaning for an old cascade as in the function
- cvHaarDetectObjects. It is not used for a new cascade.
- @param minSize Minimum possible object size. Objects smaller than that are ignored.
- @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale.
- */
- CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image,
- CV_OUT std::vector<Rect>& objects,
- CV_OUT std::vector<int>& numDetections,
- double scaleFactor=1.1,
- int minNeighbors=3, int flags=0,
- Size minSize=Size(),
- Size maxSize=Size() );
- /** @overload
- This function allows you to retrieve the final stage decision certainty of classification.
- For this, one needs to set `outputRejectLevels` on true and provide the `rejectLevels` and `levelWeights` parameter.
- For each resulting detection, `levelWeights` will then contain the certainty of classification at the final stage.
- This value can then be used to separate strong from weaker classifications.
- A code sample on how to use it efficiently can be found below:
- @code
- Mat img;
- vector<double> weights;
- vector<int> levels;
- vector<Rect> detections;
- CascadeClassifier model("/path/to/your/model.xml");
- model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true);
- cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl;
- @endcode
- */
- CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image,
- CV_OUT std::vector<Rect>& objects,
- CV_OUT std::vector<int>& rejectLevels,
- CV_OUT std::vector<double>& levelWeights,
- double scaleFactor = 1.1,
- int minNeighbors = 3, int flags = 0,
- Size minSize = Size(),
- Size maxSize = Size(),
- bool outputRejectLevels = false );
- CV_WRAP bool isOldFormatCascade() const;
- CV_WRAP Size getOriginalWindowSize() const;
- CV_WRAP int getFeatureType() const;
- void* getOldCascade();
- CV_WRAP static bool convert(const String& oldcascade, const String& newcascade);
- void setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator);
- Ptr<BaseCascadeClassifier::MaskGenerator> getMaskGenerator();
- Ptr<BaseCascadeClassifier> cc;
- };
- CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator();
- //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
- //! struct for detection region of interest (ROI)
- struct DetectionROI
- {
- //! scale(size) of the bounding box
- double scale;
- //! set of requested locations to be evaluated
- std::vector<cv::Point> locations;
- //! vector that will contain confidence values for each location
- std::vector<double> confidences;
- };
- /**@brief Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector.
- the HOG descriptor algorithm introduced by Navneet Dalal and Bill Triggs @cite Dalal2005 .
- useful links:
- https://hal.inria.fr/inria-00548512/document/
- https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
- https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor
- http://www.learnopencv.com/histogram-of-oriented-gradients
- http://www.learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial
- */
- struct CV_EXPORTS_W HOGDescriptor
- {
- public:
- enum HistogramNormType { L2Hys = 0 //!< Default histogramNormType
- };
- enum { DEFAULT_NLEVELS = 64 //!< Default nlevels value.
- };
- enum DescriptorStorageFormat { DESCR_FORMAT_COL_BY_COL, DESCR_FORMAT_ROW_BY_ROW };
- /**@brief Creates the HOG descriptor and detector with default params.
- aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )
- */
- CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
- cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
- histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
- free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false)
- {}
- /** @overload
- @param _winSize sets winSize with given value.
- @param _blockSize sets blockSize with given value.
- @param _blockStride sets blockStride with given value.
- @param _cellSize sets cellSize with given value.
- @param _nbins sets nbins with given value.
- @param _derivAperture sets derivAperture with given value.
- @param _winSigma sets winSigma with given value.
- @param _histogramNormType sets histogramNormType with given value.
- @param _L2HysThreshold sets L2HysThreshold with given value.
- @param _gammaCorrection sets gammaCorrection with given value.
- @param _nlevels sets nlevels with given value.
- @param _signedGradient sets signedGradient with given value.
- */
- CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
- Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
- HOGDescriptor::HistogramNormType _histogramNormType=HOGDescriptor::L2Hys,
- double _L2HysThreshold=0.2, bool _gammaCorrection=false,
- int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false)
- : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
- nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
- histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
- gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient)
- {}
- /** @overload
- @param filename The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier.
- */
- CV_WRAP HOGDescriptor(const String& filename)
- {
- load(filename);
- }
- /** @overload
- @param d the HOGDescriptor which cloned to create a new one.
- */
- HOGDescriptor(const HOGDescriptor& d)
- {
- d.copyTo(*this);
- }
- /**@brief Default destructor.
- */
- virtual ~HOGDescriptor() {}
- /**@brief Returns the number of coefficients required for the classification.
- */
- CV_WRAP size_t getDescriptorSize() const;
- /** @brief Checks if detector size equal to descriptor size.
- */
- CV_WRAP bool checkDetectorSize() const;
- /** @brief Returns winSigma value
- */
- CV_WRAP double getWinSigma() const;
- /**@example samples/cpp/peopledetect.cpp
- */
- /**@brief Sets coefficients for the linear SVM classifier.
- @param svmdetector coefficients for the linear SVM classifier.
- */
- CV_WRAP virtual void setSVMDetector(InputArray svmdetector);
- /** @brief Reads HOGDescriptor parameters from a cv::FileNode.
- @param fn File node
- */
- virtual bool read(FileNode& fn);
- /** @brief Stores HOGDescriptor parameters in a cv::FileStorage.
- @param fs File storage
- @param objname Object name
- */
- virtual void write(FileStorage& fs, const String& objname) const;
- /** @brief loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file.
- @param filename Path of the file to read.
- @param objname The optional name of the node to read (if empty, the first top-level node will be used).
- */
- CV_WRAP virtual bool load(const String& filename, const String& objname = String());
- /** @brief saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
- @param filename File name
- @param objname Object name
- */
- CV_WRAP virtual void save(const String& filename, const String& objname = String()) const;
- /** @brief clones the HOGDescriptor
- @param c cloned HOGDescriptor
- */
- virtual void copyTo(HOGDescriptor& c) const;
- /**@example samples/cpp/train_HOG.cpp
- */
- /** @brief Computes HOG descriptors of given image.
- @param img Matrix of the type CV_8U containing an image where HOG features will be calculated.
- @param descriptors Matrix of the type CV_32F
- @param winStride Window stride. It must be a multiple of block stride.
- @param padding Padding
- @param locations Vector of Point
- */
- CV_WRAP virtual void compute(InputArray img,
- CV_OUT std::vector<float>& descriptors,
- Size winStride = Size(), Size padding = Size(),
- const std::vector<Point>& locations = std::vector<Point>()) const;
- /** @brief Performs object detection without a multi-scale window.
- @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries.
- @param weights Vector that will contain confidence values for each detected object.
- @param hitThreshold Threshold for the distance between features and SVM classifying plane.
- Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
- But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- @param winStride Window stride. It must be a multiple of block stride.
- @param padding Padding
- @param searchLocations Vector of Point includes set of requested locations to be evaluated.
- */
- CV_WRAP virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations,
- CV_OUT std::vector<double>& weights,
- double hitThreshold = 0, Size winStride = Size(),
- Size padding = Size(),
- const std::vector<Point>& searchLocations = std::vector<Point>()) const;
- /** @brief Performs object detection without a multi-scale window.
- @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries.
- @param hitThreshold Threshold for the distance between features and SVM classifying plane.
- Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
- But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- @param winStride Window stride. It must be a multiple of block stride.
- @param padding Padding
- @param searchLocations Vector of Point includes locations to search.
- */
- virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations,
- double hitThreshold = 0, Size winStride = Size(),
- Size padding = Size(),
- const std::vector<Point>& searchLocations=std::vector<Point>()) const;
- /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
- of rectangles.
- @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- @param foundLocations Vector of rectangles where each rectangle contains the detected object.
- @param foundWeights Vector that will contain confidence values for each detected object.
- @param hitThreshold Threshold for the distance between features and SVM classifying plane.
- Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
- But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- @param winStride Window stride. It must be a multiple of block stride.
- @param padding Padding
- @param scale Coefficient of the detection window increase.
- @param finalThreshold Final threshold
- @param useMeanshiftGrouping indicates grouping algorithm
- */
- CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
- CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0,
- Size winStride = Size(), Size padding = Size(), double scale = 1.05,
- double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const;
- /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
- of rectangles.
- @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- @param foundLocations Vector of rectangles where each rectangle contains the detected object.
- @param hitThreshold Threshold for the distance between features and SVM classifying plane.
- Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
- But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- @param winStride Window stride. It must be a multiple of block stride.
- @param padding Padding
- @param scale Coefficient of the detection window increase.
- @param finalThreshold Final threshold
- @param useMeanshiftGrouping indicates grouping algorithm
- */
- virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
- double hitThreshold = 0, Size winStride = Size(),
- Size padding = Size(), double scale = 1.05,
- double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const;
- /** @brief Computes gradients and quantized gradient orientations.
- @param img Matrix contains the image to be computed
- @param grad Matrix of type CV_32FC2 contains computed gradients
- @param angleOfs Matrix of type CV_8UC2 contains quantized gradient orientations
- @param paddingTL Padding from top-left
- @param paddingBR Padding from bottom-right
- */
- CV_WRAP virtual void computeGradient(InputArray img, InputOutputArray grad, InputOutputArray angleOfs,
- Size paddingTL = Size(), Size paddingBR = Size()) const;
- /** @brief Returns coefficients of the classifier trained for people detection (for 64x128 windows).
- */
- CV_WRAP static std::vector<float> getDefaultPeopleDetector();
- /**@example samples/tapi/hog.cpp
- */
- /** @brief Returns coefficients of the classifier trained for people detection (for 48x96 windows).
- */
- CV_WRAP static std::vector<float> getDaimlerPeopleDetector();
- //! Detection window size. Align to block size and block stride. Default value is Size(64,128).
- CV_PROP Size winSize;
- //! Block size in pixels. Align to cell size. Default value is Size(16,16).
- CV_PROP Size blockSize;
- //! Block stride. It must be a multiple of cell size. Default value is Size(8,8).
- CV_PROP Size blockStride;
- //! Cell size. Default value is Size(8,8).
- CV_PROP Size cellSize;
- //! Number of bins used in the calculation of histogram of gradients. Default value is 9.
- CV_PROP int nbins;
- //! not documented
- CV_PROP int derivAperture;
- //! Gaussian smoothing window parameter.
- CV_PROP double winSigma;
- //! histogramNormType
- CV_PROP HOGDescriptor::HistogramNormType histogramNormType;
- //! L2-Hys normalization method shrinkage.
- CV_PROP double L2HysThreshold;
- //! Flag to specify whether the gamma correction preprocessing is required or not.
- CV_PROP bool gammaCorrection;
- //! coefficients for the linear SVM classifier.
- CV_PROP std::vector<float> svmDetector;
- //! coefficients for the linear SVM classifier used when OpenCL is enabled
- UMat oclSvmDetector;
- //! not documented
- float free_coef;
- //! Maximum number of detection window increases. Default value is 64
- CV_PROP int nlevels;
- //! Indicates signed gradient will be used or not
- CV_PROP bool signedGradient;
- /** @brief evaluate specified ROI and return confidence value for each location
- @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- @param locations Vector of Point
- @param foundLocations Vector of Point where each Point is detected object's top-left point.
- @param confidences confidences
- @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually
- it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if
- the free coefficient is omitted (which is allowed), you can specify it manually here
- @param winStride winStride
- @param padding padding
- */
- virtual void detectROI(InputArray img, const std::vector<cv::Point> &locations,
- CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
- double hitThreshold = 0, cv::Size winStride = Size(),
- cv::Size padding = Size()) const;
- /** @brief evaluate specified ROI and return confidence value for each location in multiple scales
- @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- @param foundLocations Vector of rectangles where each rectangle contains the detected object.
- @param locations Vector of DetectionROI
- @param hitThreshold Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified
- in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.
- */
- virtual void detectMultiScaleROI(InputArray img,
- CV_OUT std::vector<cv::Rect>& foundLocations,
- std::vector<DetectionROI>& locations,
- double hitThreshold = 0,
- int groupThreshold = 0) const;
- /** @brief Groups the object candidate rectangles.
- @param rectList Input/output vector of rectangles. Output vector includes retained and grouped rectangles. (The Python list is not modified in place.)
- @param weights Input/output vector of weights of rectangles. Output vector includes weights of retained and grouped rectangles. (The Python list is not modified in place.)
- @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.
- @param eps Relative difference between sides of the rectangles to merge them into a group.
- */
- void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const;
- };
- class CV_EXPORTS_W QRCodeDetector
- {
- public:
- CV_WRAP QRCodeDetector();
- ~QRCodeDetector();
- /** @brief sets the epsilon used during the horizontal scan of QR code stop marker detection.
- @param epsX Epsilon neighborhood, which allows you to determine the horizontal pattern
- of the scheme 1:1:3:1:1 according to QR code standard.
- */
- CV_WRAP void setEpsX(double epsX);
- /** @brief sets the epsilon used during the vertical scan of QR code stop marker detection.
- @param epsY Epsilon neighborhood, which allows you to determine the vertical pattern
- of the scheme 1:1:3:1:1 according to QR code standard.
- */
- CV_WRAP void setEpsY(double epsY);
- /** @brief Detects QR code in image and returns the quadrangle containing the code.
- @param img grayscale or color (BGR) image containing (or not) QR code.
- @param points Output vector of vertices of the minimum-area quadrangle containing the code.
- */
- CV_WRAP bool detect(InputArray img, OutputArray points) const;
- /** @brief Decodes QR code in image once it's found by the detect() method.
- Returns UTF8-encoded output string or empty string if the code cannot be decoded.
- @param img grayscale or color (BGR) image containing QR code.
- @param points Quadrangle vertices found by detect() method (or some other algorithm).
- @param straight_qrcode The optional output image containing rectified and binarized QR code
- */
- CV_WRAP std::string decode(InputArray img, InputArray points, OutputArray straight_qrcode = noArray());
- /** @brief Both detects and decodes QR code
- @param img grayscale or color (BGR) image containing QR code.
- @param points opiotnal output array of vertices of the found QR code quadrangle. Will be empty if not found.
- @param straight_qrcode The optional output image containing rectified and binarized QR code
- */
- CV_WRAP std::string detectAndDecode(InputArray img, OutputArray points=noArray(),
- OutputArray straight_qrcode = noArray());
- protected:
- struct Impl;
- Ptr<Impl> p;
- };
- //! @} objdetect
- }
- #include "opencv2/objdetect/detection_based_tracker.hpp"
- #endif
|