123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- /***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
- * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
- *
- * THE BSD LICENSE
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
- #ifndef OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
- #define OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
- namespace cvflann
- {
- /**
- Adds val to array vals (and point to array points) and keeping the arrays sorted by vals.
- */
- template <typename T>
- void addValue(int pos, float val, float* vals, T* point, T* points, int n)
- {
- vals[pos] = val;
- for (int i=0; i<n; ++i) {
- points[pos*n+i] = point[i];
- }
- // bubble down
- int j=pos;
- while (j>0 && vals[j]<vals[j-1]) {
- swap(vals[j],vals[j-1]);
- for (int i=0; i<n; ++i) {
- swap(points[j*n+i],points[(j-1)*n+i]);
- }
- --j;
- }
- }
- /**
- Simplex downhill optimization function.
- Preconditions: points is a 2D mattrix of size (n+1) x n
- func is the cost function taking n an array of n params and returning float
- vals is the cost function in the n+1 simplex points, if NULL it will be computed
- Postcondition: returns optimum value and points[0..n] are the optimum parameters
- */
- template <typename T, typename F>
- float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
- {
- const int MAX_ITERATIONS = 10;
- assert(n>0);
- T* p_o = new T[n];
- T* p_r = new T[n];
- T* p_e = new T[n];
- int alpha = 1;
- int iterations = 0;
- bool ownVals = false;
- if (vals == NULL) {
- ownVals = true;
- vals = new float[n+1];
- for (int i=0; i<n+1; ++i) {
- float val = func(points+i*n);
- addValue(i, val, vals, points+i*n, points, n);
- }
- }
- int nn = n*n;
- while (true) {
- if (iterations++ > MAX_ITERATIONS) break;
- // compute average of simplex points (except the highest point)
- for (int j=0; j<n; ++j) {
- p_o[j] = 0;
- for (int i=0; i<n; ++i) {
- p_o[i] += points[j*n+i];
- }
- }
- for (int i=0; i<n; ++i) {
- p_o[i] /= n;
- }
- bool converged = true;
- for (int i=0; i<n; ++i) {
- if (p_o[i] != points[nn+i]) {
- converged = false;
- }
- }
- if (converged) break;
- // trying a reflection
- for (int i=0; i<n; ++i) {
- p_r[i] = p_o[i] + alpha*(p_o[i]-points[nn+i]);
- }
- float val_r = func(p_r);
- if ((val_r>=vals[0])&&(val_r<vals[n])) {
- // reflection between second highest and lowest
- // add it to the simplex
- Logger::info("Choosing reflection\n");
- addValue(n, val_r,vals, p_r, points, n);
- continue;
- }
- if (val_r<vals[0]) {
- // value is smaller than smalest in simplex
- // expand some more to see if it drops further
- for (int i=0; i<n; ++i) {
- p_e[i] = 2*p_r[i]-p_o[i];
- }
- float val_e = func(p_e);
- if (val_e<val_r) {
- Logger::info("Choosing reflection and expansion\n");
- addValue(n, val_e,vals,p_e,points,n);
- }
- else {
- Logger::info("Choosing reflection\n");
- addValue(n, val_r,vals,p_r,points,n);
- }
- continue;
- }
- if (val_r>=vals[n]) {
- for (int i=0; i<n; ++i) {
- p_e[i] = (p_o[i]+points[nn+i])/2;
- }
- float val_e = func(p_e);
- if (val_e<vals[n]) {
- Logger::info("Choosing contraction\n");
- addValue(n,val_e,vals,p_e,points,n);
- continue;
- }
- }
- {
- Logger::info("Full contraction\n");
- for (int j=1; j<=n; ++j) {
- for (int i=0; i<n; ++i) {
- points[j*n+i] = (points[j*n+i]+points[i])/2;
- }
- float val = func(points+j*n);
- addValue(j,val,vals,points+j*n,points,n);
- }
- }
- }
- float bestVal = vals[0];
- delete[] p_r;
- delete[] p_o;
- delete[] p_e;
- if (ownVals) delete[] vals;
- return bestVal;
- }
- }
- #endif //OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
|