123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635 |
- /***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
- * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
- *
- * THE BSD LICENSE
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
- #ifndef OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
- #define OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
- #include <algorithm>
- #include <map>
- #include <cassert>
- #include <cstring>
- #include "general.h"
- #include "nn_index.h"
- #include "matrix.h"
- #include "result_set.h"
- #include "heap.h"
- #include "allocator.h"
- #include "random.h"
- #include "saving.h"
- namespace cvflann
- {
- struct KDTreeSingleIndexParams : public IndexParams
- {
- KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true, int dim = -1)
- {
- (*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE;
- (*this)["leaf_max_size"] = leaf_max_size;
- (*this)["reorder"] = reorder;
- (*this)["dim"] = dim;
- }
- };
- /**
- * Randomized kd-tree index
- *
- * Contains the k-d trees and other information for indexing a set of points
- * for nearest-neighbor matching.
- */
- template <typename Distance>
- class KDTreeSingleIndex : public NNIndex<Distance>
- {
- public:
- typedef typename Distance::ElementType ElementType;
- typedef typename Distance::ResultType DistanceType;
- /**
- * KDTree constructor
- *
- * Params:
- * inputData = dataset with the input features
- * params = parameters passed to the kdtree algorithm
- */
- KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(),
- Distance d = Distance() ) :
- dataset_(inputData), index_params_(params), distance_(d)
- {
- size_ = dataset_.rows;
- dim_ = dataset_.cols;
- root_node_ = 0;
- int dim_param = get_param(params,"dim",-1);
- if (dim_param>0) dim_ = dim_param;
- leaf_max_size_ = get_param(params,"leaf_max_size",10);
- reorder_ = get_param(params,"reorder",true);
- // Create a permutable array of indices to the input vectors.
- vind_.resize(size_);
- for (size_t i = 0; i < size_; i++) {
- vind_[i] = (int)i;
- }
- }
- KDTreeSingleIndex(const KDTreeSingleIndex&);
- KDTreeSingleIndex& operator=(const KDTreeSingleIndex&);
- /**
- * Standard destructor
- */
- ~KDTreeSingleIndex()
- {
- if (reorder_) delete[] data_.data;
- }
- /**
- * Builds the index
- */
- void buildIndex() CV_OVERRIDE
- {
- computeBoundingBox(root_bbox_);
- root_node_ = divideTree(0, (int)size_, root_bbox_ ); // construct the tree
- if (reorder_) {
- delete[] data_.data;
- data_ = cvflann::Matrix<ElementType>(new ElementType[size_*dim_], size_, dim_);
- for (size_t i=0; i<size_; ++i) {
- for (size_t j=0; j<dim_; ++j) {
- data_[i][j] = dataset_[vind_[i]][j];
- }
- }
- }
- else {
- data_ = dataset_;
- }
- }
- flann_algorithm_t getType() const CV_OVERRIDE
- {
- return FLANN_INDEX_KDTREE_SINGLE;
- }
- void saveIndex(FILE* stream) CV_OVERRIDE
- {
- save_value(stream, size_);
- save_value(stream, dim_);
- save_value(stream, root_bbox_);
- save_value(stream, reorder_);
- save_value(stream, leaf_max_size_);
- save_value(stream, vind_);
- if (reorder_) {
- save_value(stream, data_);
- }
- save_tree(stream, root_node_);
- }
- void loadIndex(FILE* stream) CV_OVERRIDE
- {
- load_value(stream, size_);
- load_value(stream, dim_);
- load_value(stream, root_bbox_);
- load_value(stream, reorder_);
- load_value(stream, leaf_max_size_);
- load_value(stream, vind_);
- if (reorder_) {
- load_value(stream, data_);
- }
- else {
- data_ = dataset_;
- }
- load_tree(stream, root_node_);
- index_params_["algorithm"] = getType();
- index_params_["leaf_max_size"] = leaf_max_size_;
- index_params_["reorder"] = reorder_;
- }
- /**
- * Returns size of index.
- */
- size_t size() const CV_OVERRIDE
- {
- return size_;
- }
- /**
- * Returns the length of an index feature.
- */
- size_t veclen() const CV_OVERRIDE
- {
- return dim_;
- }
- /**
- * Computes the inde memory usage
- * Returns: memory used by the index
- */
- int usedMemory() const CV_OVERRIDE
- {
- return (int)(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int)); // pool memory and vind array memory
- }
- /**
- * \brief Perform k-nearest neighbor search
- * \param[in] queries The query points for which to find the nearest neighbors
- * \param[out] indices The indices of the nearest neighbors found
- * \param[out] dists Distances to the nearest neighbors found
- * \param[in] knn Number of nearest neighbors to return
- * \param[in] params Search parameters
- */
- void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) CV_OVERRIDE
- {
- assert(queries.cols == veclen());
- assert(indices.rows >= queries.rows);
- assert(dists.rows >= queries.rows);
- assert(int(indices.cols) >= knn);
- assert(int(dists.cols) >= knn);
- KNNSimpleResultSet<DistanceType> resultSet(knn);
- for (size_t i = 0; i < queries.rows; i++) {
- resultSet.init(indices[i], dists[i]);
- findNeighbors(resultSet, queries[i], params);
- }
- }
- IndexParams getParameters() const CV_OVERRIDE
- {
- return index_params_;
- }
- /**
- * Find set of nearest neighbors to vec. Their indices are stored inside
- * the result object.
- *
- * Params:
- * result = the result object in which the indices of the nearest-neighbors are stored
- * vec = the vector for which to search the nearest neighbors
- * maxCheck = the maximum number of restarts (in a best-bin-first manner)
- */
- void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
- {
- float epsError = 1+get_param(searchParams,"eps",0.0f);
- std::vector<DistanceType> dists(dim_,0);
- DistanceType distsq = computeInitialDistances(vec, dists);
- searchLevel(result, vec, root_node_, distsq, dists, epsError);
- }
- private:
- /*--------------------- Internal Data Structures --------------------------*/
- struct Node
- {
- /**
- * Indices of points in leaf node
- */
- int left, right;
- /**
- * Dimension used for subdivision.
- */
- int divfeat;
- /**
- * The values used for subdivision.
- */
- DistanceType divlow, divhigh;
- /**
- * The child nodes.
- */
- Node* child1, * child2;
- };
- typedef Node* NodePtr;
- struct Interval
- {
- DistanceType low, high;
- };
- typedef std::vector<Interval> BoundingBox;
- typedef BranchStruct<NodePtr, DistanceType> BranchSt;
- typedef BranchSt* Branch;
- void save_tree(FILE* stream, NodePtr tree)
- {
- save_value(stream, *tree);
- if (tree->child1!=NULL) {
- save_tree(stream, tree->child1);
- }
- if (tree->child2!=NULL) {
- save_tree(stream, tree->child2);
- }
- }
- void load_tree(FILE* stream, NodePtr& tree)
- {
- tree = pool_.allocate<Node>();
- load_value(stream, *tree);
- if (tree->child1!=NULL) {
- load_tree(stream, tree->child1);
- }
- if (tree->child2!=NULL) {
- load_tree(stream, tree->child2);
- }
- }
- void computeBoundingBox(BoundingBox& bbox)
- {
- bbox.resize(dim_);
- for (size_t i=0; i<dim_; ++i) {
- bbox[i].low = (DistanceType)dataset_[0][i];
- bbox[i].high = (DistanceType)dataset_[0][i];
- }
- for (size_t k=1; k<dataset_.rows; ++k) {
- for (size_t i=0; i<dim_; ++i) {
- if (dataset_[k][i]<bbox[i].low) bbox[i].low = (DistanceType)dataset_[k][i];
- if (dataset_[k][i]>bbox[i].high) bbox[i].high = (DistanceType)dataset_[k][i];
- }
- }
- }
- /**
- * Create a tree node that subdivides the list of vecs from vind[first]
- * to vind[last]. The routine is called recursively on each sublist.
- * Place a pointer to this new tree node in the location pTree.
- *
- * Params: pTree = the new node to create
- * first = index of the first vector
- * last = index of the last vector
- */
- NodePtr divideTree(int left, int right, BoundingBox& bbox)
- {
- NodePtr node = pool_.allocate<Node>(); // allocate memory
- /* If too few exemplars remain, then make this a leaf node. */
- if ( (right-left) <= leaf_max_size_) {
- node->child1 = node->child2 = NULL; /* Mark as leaf node. */
- node->left = left;
- node->right = right;
- // compute bounding-box of leaf points
- for (size_t i=0; i<dim_; ++i) {
- bbox[i].low = (DistanceType)dataset_[vind_[left]][i];
- bbox[i].high = (DistanceType)dataset_[vind_[left]][i];
- }
- for (int k=left+1; k<right; ++k) {
- for (size_t i=0; i<dim_; ++i) {
- if (bbox[i].low>dataset_[vind_[k]][i]) bbox[i].low=(DistanceType)dataset_[vind_[k]][i];
- if (bbox[i].high<dataset_[vind_[k]][i]) bbox[i].high=(DistanceType)dataset_[vind_[k]][i];
- }
- }
- }
- else {
- int idx;
- int cutfeat;
- DistanceType cutval;
- middleSplit_(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox);
- node->divfeat = cutfeat;
- BoundingBox left_bbox(bbox);
- left_bbox[cutfeat].high = cutval;
- node->child1 = divideTree(left, left+idx, left_bbox);
- BoundingBox right_bbox(bbox);
- right_bbox[cutfeat].low = cutval;
- node->child2 = divideTree(left+idx, right, right_bbox);
- node->divlow = left_bbox[cutfeat].high;
- node->divhigh = right_bbox[cutfeat].low;
- for (size_t i=0; i<dim_; ++i) {
- bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
- bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
- }
- }
- return node;
- }
- void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem)
- {
- min_elem = dataset_[ind[0]][dim];
- max_elem = dataset_[ind[0]][dim];
- for (int i=1; i<count; ++i) {
- ElementType val = dataset_[ind[i]][dim];
- if (val<min_elem) min_elem = val;
- if (val>max_elem) max_elem = val;
- }
- }
- void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
- {
- // find the largest span from the approximate bounding box
- ElementType max_span = bbox[0].high-bbox[0].low;
- cutfeat = 0;
- cutval = (bbox[0].high+bbox[0].low)/2;
- for (size_t i=1; i<dim_; ++i) {
- ElementType span = bbox[i].high-bbox[i].low;
- if (span>max_span) {
- max_span = span;
- cutfeat = i;
- cutval = (bbox[i].high+bbox[i].low)/2;
- }
- }
- // compute exact span on the found dimension
- ElementType min_elem, max_elem;
- computeMinMax(ind, count, cutfeat, min_elem, max_elem);
- cutval = (min_elem+max_elem)/2;
- max_span = max_elem - min_elem;
- // check if a dimension of a largest span exists
- size_t k = cutfeat;
- for (size_t i=0; i<dim_; ++i) {
- if (i==k) continue;
- ElementType span = bbox[i].high-bbox[i].low;
- if (span>max_span) {
- computeMinMax(ind, count, i, min_elem, max_elem);
- span = max_elem - min_elem;
- if (span>max_span) {
- max_span = span;
- cutfeat = i;
- cutval = (min_elem+max_elem)/2;
- }
- }
- }
- int lim1, lim2;
- planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
- if (lim1>count/2) index = lim1;
- else if (lim2<count/2) index = lim2;
- else index = count/2;
- }
- void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
- {
- const float EPS=0.00001f;
- DistanceType max_span = bbox[0].high-bbox[0].low;
- for (size_t i=1; i<dim_; ++i) {
- DistanceType span = bbox[i].high-bbox[i].low;
- if (span>max_span) {
- max_span = span;
- }
- }
- DistanceType max_spread = -1;
- cutfeat = 0;
- for (size_t i=0; i<dim_; ++i) {
- DistanceType span = bbox[i].high-bbox[i].low;
- if (span>(DistanceType)((1-EPS)*max_span)) {
- ElementType min_elem, max_elem;
- computeMinMax(ind, count, cutfeat, min_elem, max_elem);
- DistanceType spread = (DistanceType)(max_elem-min_elem);
- if (spread>max_spread) {
- cutfeat = (int)i;
- max_spread = spread;
- }
- }
- }
- // split in the middle
- DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2;
- ElementType min_elem, max_elem;
- computeMinMax(ind, count, cutfeat, min_elem, max_elem);
- if (split_val<min_elem) cutval = (DistanceType)min_elem;
- else if (split_val>max_elem) cutval = (DistanceType)max_elem;
- else cutval = split_val;
- int lim1, lim2;
- planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
- if (lim1>count/2) index = lim1;
- else if (lim2<count/2) index = lim2;
- else index = count/2;
- }
- /**
- * Subdivide the list of points by a plane perpendicular on axe corresponding
- * to the 'cutfeat' dimension at 'cutval' position.
- *
- * On return:
- * dataset[ind[0..lim1-1]][cutfeat]<cutval
- * dataset[ind[lim1..lim2-1]][cutfeat]==cutval
- * dataset[ind[lim2..count]][cutfeat]>cutval
- */
- void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
- {
- /* Move vector indices for left subtree to front of list. */
- int left = 0;
- int right = count-1;
- for (;; ) {
- while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
- while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
- if (left>right) break;
- std::swap(ind[left], ind[right]); ++left; --right;
- }
- /* If either list is empty, it means that all remaining features
- * are identical. Split in the middle to maintain a balanced tree.
- */
- lim1 = left;
- right = count-1;
- for (;; ) {
- while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
- while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
- if (left>right) break;
- std::swap(ind[left], ind[right]); ++left; --right;
- }
- lim2 = left;
- }
- DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists)
- {
- DistanceType distsq = 0.0;
- for (size_t i = 0; i < dim_; ++i) {
- if (vec[i] < root_bbox_[i].low) {
- dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, (int)i);
- distsq += dists[i];
- }
- if (vec[i] > root_bbox_[i].high) {
- dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, (int)i);
- distsq += dists[i];
- }
- }
- return distsq;
- }
- /**
- * Performs an exact search in the tree starting from a node.
- */
- void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq,
- std::vector<DistanceType>& dists, const float epsError)
- {
- /* If this is a leaf node, then do check and return. */
- if ((node->child1 == NULL)&&(node->child2 == NULL)) {
- DistanceType worst_dist = result_set.worstDist();
- for (int i=node->left; i<node->right; ++i) {
- int index = reorder_ ? i : vind_[i];
- DistanceType dist = distance_(vec, data_[index], dim_, worst_dist);
- if (dist<worst_dist) {
- result_set.addPoint(dist,vind_[i]);
- }
- }
- return;
- }
- /* Which child branch should be taken first? */
- int idx = node->divfeat;
- ElementType val = vec[idx];
- DistanceType diff1 = val - node->divlow;
- DistanceType diff2 = val - node->divhigh;
- NodePtr bestChild;
- NodePtr otherChild;
- DistanceType cut_dist;
- if ((diff1+diff2)<0) {
- bestChild = node->child1;
- otherChild = node->child2;
- cut_dist = distance_.accum_dist(val, node->divhigh, idx);
- }
- else {
- bestChild = node->child2;
- otherChild = node->child1;
- cut_dist = distance_.accum_dist( val, node->divlow, idx);
- }
- /* Call recursively to search next level down. */
- searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError);
- DistanceType dst = dists[idx];
- mindistsq = mindistsq + cut_dist - dst;
- dists[idx] = cut_dist;
- if (mindistsq*epsError<=result_set.worstDist()) {
- searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError);
- }
- dists[idx] = dst;
- }
- private:
- /**
- * The dataset used by this index
- */
- const Matrix<ElementType> dataset_;
- IndexParams index_params_;
- int leaf_max_size_;
- bool reorder_;
- /**
- * Array of indices to vectors in the dataset.
- */
- std::vector<int> vind_;
- Matrix<ElementType> data_;
- size_t size_;
- size_t dim_;
- /**
- * Array of k-d trees used to find neighbours.
- */
- NodePtr root_node_;
- BoundingBox root_bbox_;
- /**
- * Pooled memory allocator.
- *
- * Using a pooled memory allocator is more efficient
- * than allocating memory directly when there is a large
- * number small of memory allocations.
- */
- PooledAllocator pool_;
- Distance distance_;
- }; // class KDTree
- }
- #endif //OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
|