123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295 |
- /***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
- * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
- *
- * THE BSD LICENSE
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
- #ifndef OPENCV_FLANN_BASE_HPP_
- #define OPENCV_FLANN_BASE_HPP_
- #include <vector>
- #include <cassert>
- #include <cstdio>
- #include "general.h"
- #include "matrix.h"
- #include "params.h"
- #include "saving.h"
- #include "all_indices.h"
- namespace cvflann
- {
- /**
- * Sets the log level used for all flann functions
- * @param level Verbosity level
- */
- inline void log_verbosity(int level)
- {
- if (level >= 0) {
- Logger::setLevel(level);
- }
- }
- /**
- * (Deprecated) Index parameters for creating a saved index.
- */
- struct SavedIndexParams : public IndexParams
- {
- SavedIndexParams(cv::String filename)
- {
- (* this)["algorithm"] = FLANN_INDEX_SAVED;
- (*this)["filename"] = filename;
- }
- };
- template<typename Distance>
- NNIndex<Distance>* load_saved_index(const Matrix<typename Distance::ElementType>& dataset, const cv::String& filename, Distance distance)
- {
- typedef typename Distance::ElementType ElementType;
- FILE* fin = fopen(filename.c_str(), "rb");
- if (fin == NULL) {
- return NULL;
- }
- IndexHeader header = load_header(fin);
- if (header.data_type != Datatype<ElementType>::type()) {
- fclose(fin);
- throw FLANNException("Datatype of saved index is different than of the one to be created.");
- }
- if ((size_t(header.rows) != dataset.rows)||(size_t(header.cols) != dataset.cols)) {
- fclose(fin);
- throw FLANNException("The index saved belongs to a different dataset");
- }
- IndexParams params;
- params["algorithm"] = header.index_type;
- NNIndex<Distance>* nnIndex = create_index_by_type<Distance>(dataset, params, distance);
- nnIndex->loadIndex(fin);
- fclose(fin);
- return nnIndex;
- }
- template<typename Distance>
- class Index : public NNIndex<Distance>
- {
- public:
- typedef typename Distance::ElementType ElementType;
- typedef typename Distance::ResultType DistanceType;
- Index(const Matrix<ElementType>& features, const IndexParams& params, Distance distance = Distance() )
- : index_params_(params)
- {
- flann_algorithm_t index_type = get_param<flann_algorithm_t>(params,"algorithm");
- loaded_ = false;
- if (index_type == FLANN_INDEX_SAVED) {
- nnIndex_ = load_saved_index<Distance>(features, get_param<cv::String>(params,"filename"), distance);
- loaded_ = true;
- }
- else {
- nnIndex_ = create_index_by_type<Distance>(features, params, distance);
- }
- }
- ~Index()
- {
- delete nnIndex_;
- }
- /**
- * Builds the index.
- */
- void buildIndex() CV_OVERRIDE
- {
- if (!loaded_) {
- nnIndex_->buildIndex();
- }
- }
- void save(cv::String filename)
- {
- FILE* fout = fopen(filename.c_str(), "wb");
- if (fout == NULL) {
- throw FLANNException("Cannot open file");
- }
- save_header(fout, *nnIndex_);
- saveIndex(fout);
- fclose(fout);
- }
- /**
- * \brief Saves the index to a stream
- * \param stream The stream to save the index to
- */
- virtual void saveIndex(FILE* stream) CV_OVERRIDE
- {
- nnIndex_->saveIndex(stream);
- }
- /**
- * \brief Loads the index from a stream
- * \param stream The stream from which the index is loaded
- */
- virtual void loadIndex(FILE* stream) CV_OVERRIDE
- {
- nnIndex_->loadIndex(stream);
- }
- /**
- * \returns number of features in this index.
- */
- size_t veclen() const CV_OVERRIDE
- {
- return nnIndex_->veclen();
- }
- /**
- * \returns The dimensionality of the features in this index.
- */
- size_t size() const CV_OVERRIDE
- {
- return nnIndex_->size();
- }
- /**
- * \returns The index type (kdtree, kmeans,...)
- */
- flann_algorithm_t getType() const CV_OVERRIDE
- {
- return nnIndex_->getType();
- }
- /**
- * \returns The amount of memory (in bytes) used by the index.
- */
- virtual int usedMemory() const CV_OVERRIDE
- {
- return nnIndex_->usedMemory();
- }
- /**
- * \returns The index parameters
- */
- IndexParams getParameters() const CV_OVERRIDE
- {
- return nnIndex_->getParameters();
- }
- /**
- * \brief Perform k-nearest neighbor search
- * \param[in] queries The query points for which to find the nearest neighbors
- * \param[out] indices The indices of the nearest neighbors found
- * \param[out] dists Distances to the nearest neighbors found
- * \param[in] knn Number of nearest neighbors to return
- * \param[in] params Search parameters
- */
- void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) CV_OVERRIDE
- {
- nnIndex_->knnSearch(queries, indices, dists, knn, params);
- }
- /**
- * \brief Perform radius search
- * \param[in] query The query point
- * \param[out] indices The indinces of the neighbors found within the given radius
- * \param[out] dists The distances to the nearest neighbors found
- * \param[in] radius The radius used for search
- * \param[in] params Search parameters
- * \returns Number of neighbors found
- */
- int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params) CV_OVERRIDE
- {
- return nnIndex_->radiusSearch(query, indices, dists, radius, params);
- }
- /**
- * \brief Method that searches for nearest-neighbours
- */
- void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
- {
- nnIndex_->findNeighbors(result, vec, searchParams);
- }
- /**
- * \brief Returns actual index
- */
- CV_DEPRECATED NNIndex<Distance>* getIndex()
- {
- return nnIndex_;
- }
- /**
- * \brief Returns index parameters.
- * \deprecated use getParameters() instead.
- */
- CV_DEPRECATED const IndexParams* getIndexParameters()
- {
- return &index_params_;
- }
- private:
- /** Pointer to actual index class */
- NNIndex<Distance>* nnIndex_;
- /** Indices if the index was loaded from a file */
- bool loaded_;
- /** Parameters passed to the index */
- IndexParams index_params_;
- Index(const Index &); // copy disabled
- Index& operator=(const Index &); // assign disabled
- };
- /**
- * Performs a hierarchical clustering of the points passed as argument and then takes a cut in the
- * the clustering tree to return a flat clustering.
- * @param[in] points Points to be clustered
- * @param centers The computed cluster centres. Matrix should be preallocated and centers.rows is the
- * number of clusters requested.
- * @param params Clustering parameters (The same as for cvflann::KMeansIndex)
- * @param d Distance to be used for clustering (eg: cvflann::L2)
- * @return number of clusters computed (can be different than clusters.rows and is the highest number
- * of the form (branching-1)*K+1 smaller than clusters.rows).
- */
- template <typename Distance>
- int hierarchicalClustering(const Matrix<typename Distance::ElementType>& points, Matrix<typename Distance::ResultType>& centers,
- const KMeansIndexParams& params, Distance d = Distance())
- {
- KMeansIndex<Distance> kmeans(points, params, d);
- kmeans.buildIndex();
- int clusterNum = kmeans.getClusterCenters(centers);
- return clusterNum;
- }
- }
- #endif /* OPENCV_FLANN_BASE_HPP_ */
|