123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904 |
- /***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
- * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
- *
- * THE BSD LICENSE
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
- #ifndef OPENCV_FLANN_DIST_H_
- #define OPENCV_FLANN_DIST_H_
- #include <cmath>
- #include <cstdlib>
- #include <string.h>
- #ifdef _MSC_VER
- typedef unsigned __int32 uint32_t;
- typedef unsigned __int64 uint64_t;
- #else
- #include <stdint.h>
- #endif
- #include "defines.h"
- #if defined _WIN32 && defined(_M_ARM)
- # include <Intrin.h>
- #endif
- #if defined(__ARM_NEON__) && !defined(__CUDACC__)
- # include "arm_neon.h"
- #endif
- namespace cvflann
- {
- template<typename T>
- inline T abs(T x) { return (x<0) ? -x : x; }
- template<>
- inline int abs<int>(int x) { return ::abs(x); }
- template<>
- inline float abs<float>(float x) { return fabsf(x); }
- template<>
- inline double abs<double>(double x) { return fabs(x); }
- template<typename T>
- struct Accumulator { typedef T Type; };
- template<>
- struct Accumulator<unsigned char> { typedef float Type; };
- template<>
- struct Accumulator<unsigned short> { typedef float Type; };
- template<>
- struct Accumulator<unsigned int> { typedef float Type; };
- template<>
- struct Accumulator<char> { typedef float Type; };
- template<>
- struct Accumulator<short> { typedef float Type; };
- template<>
- struct Accumulator<int> { typedef float Type; };
- #undef True
- #undef False
- class True
- {
- };
- class False
- {
- };
- /**
- * Squared Euclidean distance functor.
- *
- * This is the simpler, unrolled version. This is preferable for
- * very low dimensionality data (eg 3D points)
- */
- template<class T>
- struct L2_Simple
- {
- typedef True is_kdtree_distance;
- typedef True is_vector_space_distance;
- typedef T ElementType;
- typedef typename Accumulator<T>::Type ResultType;
- template <typename Iterator1, typename Iterator2>
- ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
- {
- ResultType result = ResultType();
- ResultType diff;
- for(size_t i = 0; i < size; ++i ) {
- diff = (ResultType)(*a++ - *b++);
- result += diff*diff;
- }
- return result;
- }
- template <typename U, typename V>
- inline ResultType accum_dist(const U& a, const V& b, int) const
- {
- return (a-b)*(a-b);
- }
- };
- /**
- * Squared Euclidean distance functor, optimized version
- */
- template<class T>
- struct L2
- {
- typedef True is_kdtree_distance;
- typedef True is_vector_space_distance;
- typedef T ElementType;
- typedef typename Accumulator<T>::Type ResultType;
- /**
- * Compute the squared Euclidean distance between two vectors.
- *
- * This is highly optimised, with loop unrolling, as it is one
- * of the most expensive inner loops.
- *
- * The computation of squared root at the end is omitted for
- * efficiency.
- */
- template <typename Iterator1, typename Iterator2>
- ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
- {
- ResultType result = ResultType();
- ResultType diff0, diff1, diff2, diff3;
- Iterator1 last = a + size;
- Iterator1 lastgroup = last - 3;
- /* Process 4 items with each loop for efficiency. */
- while (a < lastgroup) {
- diff0 = (ResultType)(a[0] - b[0]);
- diff1 = (ResultType)(a[1] - b[1]);
- diff2 = (ResultType)(a[2] - b[2]);
- diff3 = (ResultType)(a[3] - b[3]);
- result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
- a += 4;
- b += 4;
- if ((worst_dist>0)&&(result>worst_dist)) {
- return result;
- }
- }
- /* Process last 0-3 pixels. Not needed for standard vector lengths. */
- while (a < last) {
- diff0 = (ResultType)(*a++ - *b++);
- result += diff0 * diff0;
- }
- return result;
- }
- /**
- * Partial euclidean distance, using just one dimension. This is used by the
- * kd-tree when computing partial distances while traversing the tree.
- *
- * Squared root is omitted for efficiency.
- */
- template <typename U, typename V>
- inline ResultType accum_dist(const U& a, const V& b, int) const
- {
- return (a-b)*(a-b);
- }
- };
- /*
- * Manhattan distance functor, optimized version
- */
- template<class T>
- struct L1
- {
- typedef True is_kdtree_distance;
- typedef True is_vector_space_distance;
- typedef T ElementType;
- typedef typename Accumulator<T>::Type ResultType;
- /**
- * Compute the Manhattan (L_1) distance between two vectors.
- *
- * This is highly optimised, with loop unrolling, as it is one
- * of the most expensive inner loops.
- */
- template <typename Iterator1, typename Iterator2>
- ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
- {
- ResultType result = ResultType();
- ResultType diff0, diff1, diff2, diff3;
- Iterator1 last = a + size;
- Iterator1 lastgroup = last - 3;
- /* Process 4 items with each loop for efficiency. */
- while (a < lastgroup) {
- diff0 = (ResultType)abs(a[0] - b[0]);
- diff1 = (ResultType)abs(a[1] - b[1]);
- diff2 = (ResultType)abs(a[2] - b[2]);
- diff3 = (ResultType)abs(a[3] - b[3]);
- result += diff0 + diff1 + diff2 + diff3;
- a += 4;
- b += 4;
- if ((worst_dist>0)&&(result>worst_dist)) {
- return result;
- }
- }
- /* Process last 0-3 pixels. Not needed for standard vector lengths. */
- while (a < last) {
- diff0 = (ResultType)abs(*a++ - *b++);
- result += diff0;
- }
- return result;
- }
- /**
- * Partial distance, used by the kd-tree.
- */
- template <typename U, typename V>
- inline ResultType accum_dist(const U& a, const V& b, int) const
- {
- return abs(a-b);
- }
- };
- template<class T>
- struct MinkowskiDistance
- {
- typedef True is_kdtree_distance;
- typedef True is_vector_space_distance;
- typedef T ElementType;
- typedef typename Accumulator<T>::Type ResultType;
- int order;
- MinkowskiDistance(int order_) : order(order_) {}
- /**
- * Compute the Minkowsky (L_p) distance between two vectors.
- *
- * This is highly optimised, with loop unrolling, as it is one
- * of the most expensive inner loops.
- *
- * The computation of squared root at the end is omitted for
- * efficiency.
- */
- template <typename Iterator1, typename Iterator2>
- ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
- {
- ResultType result = ResultType();
- ResultType diff0, diff1, diff2, diff3;
- Iterator1 last = a + size;
- Iterator1 lastgroup = last - 3;
- /* Process 4 items with each loop for efficiency. */
- while (a < lastgroup) {
- diff0 = (ResultType)abs(a[0] - b[0]);
- diff1 = (ResultType)abs(a[1] - b[1]);
- diff2 = (ResultType)abs(a[2] - b[2]);
- diff3 = (ResultType)abs(a[3] - b[3]);
- result += pow(diff0,order) + pow(diff1,order) + pow(diff2,order) + pow(diff3,order);
- a += 4;
- b += 4;
- if ((worst_dist>0)&&(result>worst_dist)) {
- return result;
- }
- }
- /* Process last 0-3 pixels. Not needed for standard vector lengths. */
- while (a < last) {
- diff0 = (ResultType)abs(*a++ - *b++);
- result += pow(diff0,order);
- }
- return result;
- }
- /**
- * Partial distance, used by the kd-tree.
- */
- template <typename U, typename V>
- inline ResultType accum_dist(const U& a, const V& b, int) const
- {
- return pow(static_cast<ResultType>(abs(a-b)),order);
- }
- };
- template<class T>
- struct MaxDistance
- {
- typedef False is_kdtree_distance;
- typedef True is_vector_space_distance;
- typedef T ElementType;
- typedef typename Accumulator<T>::Type ResultType;
- /**
- * Compute the max distance (L_infinity) between two vectors.
- *
- * This distance is not a valid kdtree distance, it's not dimensionwise additive.
- */
- template <typename Iterator1, typename Iterator2>
- ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
- {
- ResultType result = ResultType();
- ResultType diff0, diff1, diff2, diff3;
- Iterator1 last = a + size;
- Iterator1 lastgroup = last - 3;
- /* Process 4 items with each loop for efficiency. */
- while (a < lastgroup) {
- diff0 = abs(a[0] - b[0]);
- diff1 = abs(a[1] - b[1]);
- diff2 = abs(a[2] - b[2]);
- diff3 = abs(a[3] - b[3]);
- if (diff0>result) {result = diff0; }
- if (diff1>result) {result = diff1; }
- if (diff2>result) {result = diff2; }
- if (diff3>result) {result = diff3; }
- a += 4;
- b += 4;
- if ((worst_dist>0)&&(result>worst_dist)) {
- return result;
- }
- }
- /* Process last 0-3 pixels. Not needed for standard vector lengths. */
- while (a < last) {
- diff0 = abs(*a++ - *b++);
- result = (diff0>result) ? diff0 : result;
- }
- return result;
- }
- /* This distance functor is not dimension-wise additive, which
- * makes it an invalid kd-tree distance, not implementing the accum_dist method */
- };
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
- * bit count of A exclusive XOR'ed with B
- */
- struct HammingLUT
- {
- typedef False is_kdtree_distance;
- typedef False is_vector_space_distance;
- typedef unsigned char ElementType;
- typedef int ResultType;
- /** this will count the bits in a ^ b
- */
- ResultType operator()(const unsigned char* a, const unsigned char* b, size_t size) const
- {
- static const uchar popCountTable[] =
- {
- 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
- };
- ResultType result = 0;
- for (size_t i = 0; i < size; i++) {
- result += popCountTable[a[i] ^ b[i]];
- }
- return result;
- }
- };
- /**
- * Hamming distance functor (pop count between two binary vectors, i.e. xor them and count the number of bits set)
- * That code was taken from brief.cpp in OpenCV
- */
- template<class T>
- struct Hamming
- {
- typedef False is_kdtree_distance;
- typedef False is_vector_space_distance;
- typedef T ElementType;
- typedef int ResultType;
- template<typename Iterator1, typename Iterator2>
- ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
- {
- ResultType result = 0;
- #if defined(__ARM_NEON__) && !defined(__CUDACC__)
- {
- uint32x4_t bits = vmovq_n_u32(0);
- for (size_t i = 0; i < size; i += 16) {
- uint8x16_t A_vec = vld1q_u8 (a + i);
- uint8x16_t B_vec = vld1q_u8 (b + i);
- uint8x16_t AxorB = veorq_u8 (A_vec, B_vec);
- uint8x16_t bitsSet = vcntq_u8 (AxorB);
- uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet);
- uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8);
- bits = vaddq_u32(bits, bitSet4);
- }
- uint64x2_t bitSet2 = vpaddlq_u32 (bits);
- result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0);
- result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2);
- }
- #elif __GNUC__
- {
- //for portability just use unsigned long -- and use the __builtin_popcountll (see docs for __builtin_popcountll)
- typedef unsigned long long pop_t;
- const size_t modulo = size % sizeof(pop_t);
- const pop_t* a2 = reinterpret_cast<const pop_t*> (a);
- const pop_t* b2 = reinterpret_cast<const pop_t*> (b);
- const pop_t* a2_end = a2 + (size / sizeof(pop_t));
- for (; a2 != a2_end; ++a2, ++b2) result += __builtin_popcountll((*a2) ^ (*b2));
- if (modulo) {
- //in the case where size is not dividable by sizeof(size_t)
- //need to mask off the bits at the end
- pop_t a_final = 0, b_final = 0;
- memcpy(&a_final, a2, modulo);
- memcpy(&b_final, b2, modulo);
- result += __builtin_popcountll(a_final ^ b_final);
- }
- }
- #else // NO NEON and NOT GNUC
- HammingLUT lut;
- result = lut(reinterpret_cast<const unsigned char*> (a),
- reinterpret_cast<const unsigned char*> (b), size);
- #endif
- return result;
- }
- };
- template<typename T>
- struct Hamming2
- {
- typedef False is_kdtree_distance;
- typedef False is_vector_space_distance;
- typedef T ElementType;
- typedef int ResultType;
- /** This is popcount_3() from:
- * http://en.wikipedia.org/wiki/Hamming_weight */
- unsigned int popcnt32(uint32_t n) const
- {
- n -= ((n >> 1) & 0x55555555);
- n = (n & 0x33333333) + ((n >> 2) & 0x33333333);
- return (((n + (n >> 4))& 0xF0F0F0F)* 0x1010101) >> 24;
- }
- #ifdef FLANN_PLATFORM_64_BIT
- unsigned int popcnt64(uint64_t n) const
- {
- n -= ((n >> 1) & 0x5555555555555555);
- n = (n & 0x3333333333333333) + ((n >> 2) & 0x3333333333333333);
- return (((n + (n >> 4))& 0x0f0f0f0f0f0f0f0f)* 0x0101010101010101) >> 56;
- }
- #endif
- template <typename Iterator1, typename Iterator2>
- ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
- {
- #ifdef FLANN_PLATFORM_64_BIT
- const uint64_t* pa = reinterpret_cast<const uint64_t*>(a);
- const uint64_t* pb = reinterpret_cast<const uint64_t*>(b);
- ResultType result = 0;
- size /= (sizeof(uint64_t)/sizeof(unsigned char));
- for(size_t i = 0; i < size; ++i ) {
- result += popcnt64(*pa ^ *pb);
- ++pa;
- ++pb;
- }
- #else
- const uint32_t* pa = reinterpret_cast<const uint32_t*>(a);
- const uint32_t* pb = reinterpret_cast<const uint32_t*>(b);
- ResultType result = 0;
- size /= (sizeof(uint32_t)/sizeof(unsigned char));
- for(size_t i = 0; i < size; ++i ) {
- result += popcnt32(*pa ^ *pb);
- ++pa;
- ++pb;
- }
- #endif
- return result;
- }
- };
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- template<class T>
- struct HistIntersectionDistance
- {
- typedef True is_kdtree_distance;
- typedef True is_vector_space_distance;
- typedef T ElementType;
- typedef typename Accumulator<T>::Type ResultType;
- /**
- * Compute the histogram intersection distance
- */
- template <typename Iterator1, typename Iterator2>
- ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
- {
- ResultType result = ResultType();
- ResultType min0, min1, min2, min3;
- Iterator1 last = a + size;
- Iterator1 lastgroup = last - 3;
- /* Process 4 items with each loop for efficiency. */
- while (a < lastgroup) {
- min0 = (ResultType)(a[0] < b[0] ? a[0] : b[0]);
- min1 = (ResultType)(a[1] < b[1] ? a[1] : b[1]);
- min2 = (ResultType)(a[2] < b[2] ? a[2] : b[2]);
- min3 = (ResultType)(a[3] < b[3] ? a[3] : b[3]);
- result += min0 + min1 + min2 + min3;
- a += 4;
- b += 4;
- if ((worst_dist>0)&&(result>worst_dist)) {
- return result;
- }
- }
- /* Process last 0-3 pixels. Not needed for standard vector lengths. */
- while (a < last) {
- min0 = (ResultType)(*a < *b ? *a : *b);
- result += min0;
- ++a;
- ++b;
- }
- return result;
- }
- /**
- * Partial distance, used by the kd-tree.
- */
- template <typename U, typename V>
- inline ResultType accum_dist(const U& a, const V& b, int) const
- {
- return a<b ? a : b;
- }
- };
- template<class T>
- struct HellingerDistance
- {
- typedef True is_kdtree_distance;
- typedef True is_vector_space_distance;
- typedef T ElementType;
- typedef typename Accumulator<T>::Type ResultType;
- /**
- * Compute the Hellinger distance
- */
- template <typename Iterator1, typename Iterator2>
- ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const
- {
- ResultType result = ResultType();
- ResultType diff0, diff1, diff2, diff3;
- Iterator1 last = a + size;
- Iterator1 lastgroup = last - 3;
- /* Process 4 items with each loop for efficiency. */
- while (a < lastgroup) {
- diff0 = sqrt(static_cast<ResultType>(a[0])) - sqrt(static_cast<ResultType>(b[0]));
- diff1 = sqrt(static_cast<ResultType>(a[1])) - sqrt(static_cast<ResultType>(b[1]));
- diff2 = sqrt(static_cast<ResultType>(a[2])) - sqrt(static_cast<ResultType>(b[2]));
- diff3 = sqrt(static_cast<ResultType>(a[3])) - sqrt(static_cast<ResultType>(b[3]));
- result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
- a += 4;
- b += 4;
- }
- while (a < last) {
- diff0 = sqrt(static_cast<ResultType>(*a++)) - sqrt(static_cast<ResultType>(*b++));
- result += diff0 * diff0;
- }
- return result;
- }
- /**
- * Partial distance, used by the kd-tree.
- */
- template <typename U, typename V>
- inline ResultType accum_dist(const U& a, const V& b, int) const
- {
- ResultType diff = sqrt(static_cast<ResultType>(a)) - sqrt(static_cast<ResultType>(b));
- return diff * diff;
- }
- };
- template<class T>
- struct ChiSquareDistance
- {
- typedef True is_kdtree_distance;
- typedef True is_vector_space_distance;
- typedef T ElementType;
- typedef typename Accumulator<T>::Type ResultType;
- /**
- * Compute the chi-square distance
- */
- template <typename Iterator1, typename Iterator2>
- ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
- {
- ResultType result = ResultType();
- ResultType sum, diff;
- Iterator1 last = a + size;
- while (a < last) {
- sum = (ResultType)(*a + *b);
- if (sum>0) {
- diff = (ResultType)(*a - *b);
- result += diff*diff/sum;
- }
- ++a;
- ++b;
- if ((worst_dist>0)&&(result>worst_dist)) {
- return result;
- }
- }
- return result;
- }
- /**
- * Partial distance, used by the kd-tree.
- */
- template <typename U, typename V>
- inline ResultType accum_dist(const U& a, const V& b, int) const
- {
- ResultType result = ResultType();
- ResultType sum, diff;
- sum = (ResultType)(a+b);
- if (sum>0) {
- diff = (ResultType)(a-b);
- result = diff*diff/sum;
- }
- return result;
- }
- };
- template<class T>
- struct KL_Divergence
- {
- typedef True is_kdtree_distance;
- typedef True is_vector_space_distance;
- typedef T ElementType;
- typedef typename Accumulator<T>::Type ResultType;
- /**
- * Compute the Kullback-Leibler divergence
- */
- template <typename Iterator1, typename Iterator2>
- ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
- {
- ResultType result = ResultType();
- Iterator1 last = a + size;
- while (a < last) {
- if (* b != 0) {
- ResultType ratio = (ResultType)(*a / *b);
- if (ratio>0) {
- result += *a * log(ratio);
- }
- }
- ++a;
- ++b;
- if ((worst_dist>0)&&(result>worst_dist)) {
- return result;
- }
- }
- return result;
- }
- /**
- * Partial distance, used by the kd-tree.
- */
- template <typename U, typename V>
- inline ResultType accum_dist(const U& a, const V& b, int) const
- {
- ResultType result = ResultType();
- if( *b != 0 ) {
- ResultType ratio = (ResultType)(a / b);
- if (ratio>0) {
- result = a * log(ratio);
- }
- }
- return result;
- }
- };
- /*
- * This is a "zero iterator". It basically behaves like a zero filled
- * array to all algorithms that use arrays as iterators (STL style).
- * It's useful when there's a need to compute the distance between feature
- * and origin it and allows for better compiler optimisation than using a
- * zero-filled array.
- */
- template <typename T>
- struct ZeroIterator
- {
- T operator*()
- {
- return 0;
- }
- T operator[](int)
- {
- return 0;
- }
- const ZeroIterator<T>& operator ++()
- {
- return *this;
- }
- ZeroIterator<T> operator ++(int)
- {
- return *this;
- }
- ZeroIterator<T>& operator+=(int)
- {
- return *this;
- }
- };
- /*
- * Depending on processed distances, some of them are already squared (e.g. L2)
- * and some are not (e.g.Hamming). In KMeans++ for instance we want to be sure
- * we are working on ^2 distances, thus following templates to ensure that.
- */
- template <typename Distance, typename ElementType>
- struct squareDistance
- {
- typedef typename Distance::ResultType ResultType;
- ResultType operator()( ResultType dist ) { return dist*dist; }
- };
- template <typename ElementType>
- struct squareDistance<L2_Simple<ElementType>, ElementType>
- {
- typedef typename L2_Simple<ElementType>::ResultType ResultType;
- ResultType operator()( ResultType dist ) { return dist; }
- };
- template <typename ElementType>
- struct squareDistance<L2<ElementType>, ElementType>
- {
- typedef typename L2<ElementType>::ResultType ResultType;
- ResultType operator()( ResultType dist ) { return dist; }
- };
- template <typename ElementType>
- struct squareDistance<MinkowskiDistance<ElementType>, ElementType>
- {
- typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;
- ResultType operator()( ResultType dist ) { return dist; }
- };
- template <typename ElementType>
- struct squareDistance<HellingerDistance<ElementType>, ElementType>
- {
- typedef typename HellingerDistance<ElementType>::ResultType ResultType;
- ResultType operator()( ResultType dist ) { return dist; }
- };
- template <typename ElementType>
- struct squareDistance<ChiSquareDistance<ElementType>, ElementType>
- {
- typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;
- ResultType operator()( ResultType dist ) { return dist; }
- };
- template <typename Distance>
- typename Distance::ResultType ensureSquareDistance( typename Distance::ResultType dist )
- {
- typedef typename Distance::ElementType ElementType;
- squareDistance<Distance, ElementType> dummy;
- return dummy( dist );
- }
- /*
- * ...and a template to ensure the user that he will process the normal distance,
- * and not squared distance, without losing processing time calling sqrt(ensureSquareDistance)
- * that will result in doing actually sqrt(dist*dist) for L1 distance for instance.
- */
- template <typename Distance, typename ElementType>
- struct simpleDistance
- {
- typedef typename Distance::ResultType ResultType;
- ResultType operator()( ResultType dist ) { return dist; }
- };
- template <typename ElementType>
- struct simpleDistance<L2_Simple<ElementType>, ElementType>
- {
- typedef typename L2_Simple<ElementType>::ResultType ResultType;
- ResultType operator()( ResultType dist ) { return sqrt(dist); }
- };
- template <typename ElementType>
- struct simpleDistance<L2<ElementType>, ElementType>
- {
- typedef typename L2<ElementType>::ResultType ResultType;
- ResultType operator()( ResultType dist ) { return sqrt(dist); }
- };
- template <typename ElementType>
- struct simpleDistance<MinkowskiDistance<ElementType>, ElementType>
- {
- typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;
- ResultType operator()( ResultType dist ) { return sqrt(dist); }
- };
- template <typename ElementType>
- struct simpleDistance<HellingerDistance<ElementType>, ElementType>
- {
- typedef typename HellingerDistance<ElementType>::ResultType ResultType;
- ResultType operator()( ResultType dist ) { return sqrt(dist); }
- };
- template <typename ElementType>
- struct simpleDistance<ChiSquareDistance<ElementType>, ElementType>
- {
- typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;
- ResultType operator()( ResultType dist ) { return sqrt(dist); }
- };
- template <typename Distance>
- typename Distance::ResultType ensureSimpleDistance( typename Distance::ResultType dist )
- {
- typedef typename Distance::ElementType ElementType;
- simpleDistance<Distance, ElementType> dummy;
- return dummy( dist );
- }
- }
- #endif //OPENCV_FLANN_DIST_H_
|