123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_DNN_DNN_ALL_LAYERS_HPP
- #define OPENCV_DNN_DNN_ALL_LAYERS_HPP
- #include <opencv2/dnn.hpp>
- namespace cv {
- namespace dnn {
- CV__DNN_INLINE_NS_BEGIN
- //! @addtogroup dnn
- //! @{
- /** @defgroup dnnLayerList Partial List of Implemented Layers
- @{
- This subsection of dnn module contains information about built-in layers and their descriptions.
- Classes listed here, in fact, provides C++ API for creating instances of built-in layers.
- In addition to this way of layers instantiation, there is a more common factory API (see @ref dnnLayerFactory), it allows to create layers dynamically (by name) and register new ones.
- You can use both API, but factory API is less convenient for native C++ programming and basically designed for use inside importers (see @ref readNetFromCaffe(), @ref readNetFromTorch(), @ref readNetFromTensorflow()).
- Built-in layers partially reproduce functionality of corresponding Caffe and Torch7 layers.
- In particular, the following layers and Caffe importer were tested to reproduce <a href="http://caffe.berkeleyvision.org/tutorial/layers.html">Caffe</a> functionality:
- - Convolution
- - Deconvolution
- - Pooling
- - InnerProduct
- - TanH, ReLU, Sigmoid, BNLL, Power, AbsVal
- - Softmax
- - Reshape, Flatten, Slice, Split
- - LRN
- - MVN
- - Dropout (since it does nothing on forward pass -))
- */
- class CV_EXPORTS BlankLayer : public Layer
- {
- public:
- static Ptr<Layer> create(const LayerParams ¶ms);
- };
- /**
- * Constant layer produces the same data blob at an every forward pass.
- */
- class CV_EXPORTS ConstLayer : public Layer
- {
- public:
- static Ptr<Layer> create(const LayerParams ¶ms);
- };
- //! LSTM recurrent layer
- class CV_EXPORTS LSTMLayer : public Layer
- {
- public:
- /** Creates instance of LSTM layer */
- static Ptr<LSTMLayer> create(const LayerParams& params);
- /** @deprecated Use LayerParams::blobs instead.
- @brief Set trained weights for LSTM layer.
- LSTM behavior on each step is defined by current input, previous output, previous cell state and learned weights.
- Let @f$x_t@f$ be current input, @f$h_t@f$ be current output, @f$c_t@f$ be current state.
- Than current output and current cell state is computed as follows:
- @f{eqnarray*}{
- h_t &= o_t \odot tanh(c_t), \\
- c_t &= f_t \odot c_{t-1} + i_t \odot g_t, \\
- @f}
- where @f$\odot@f$ is per-element multiply operation and @f$i_t, f_t, o_t, g_t@f$ is internal gates that are computed using learned wights.
- Gates are computed as follows:
- @f{eqnarray*}{
- i_t &= sigmoid&(W_{xi} x_t + W_{hi} h_{t-1} + b_i), \\
- f_t &= sigmoid&(W_{xf} x_t + W_{hf} h_{t-1} + b_f), \\
- o_t &= sigmoid&(W_{xo} x_t + W_{ho} h_{t-1} + b_o), \\
- g_t &= tanh &(W_{xg} x_t + W_{hg} h_{t-1} + b_g), \\
- @f}
- where @f$W_{x?}@f$, @f$W_{h?}@f$ and @f$b_{?}@f$ are learned weights represented as matrices:
- @f$W_{x?} \in R^{N_h \times N_x}@f$, @f$W_{h?} \in R^{N_h \times N_h}@f$, @f$b_? \in R^{N_h}@f$.
- For simplicity and performance purposes we use @f$ W_x = [W_{xi}; W_{xf}; W_{xo}, W_{xg}] @f$
- (i.e. @f$W_x@f$ is vertical concatenation of @f$ W_{x?} @f$), @f$ W_x \in R^{4N_h \times N_x} @f$.
- The same for @f$ W_h = [W_{hi}; W_{hf}; W_{ho}, W_{hg}], W_h \in R^{4N_h \times N_h} @f$
- and for @f$ b = [b_i; b_f, b_o, b_g]@f$, @f$b \in R^{4N_h} @f$.
- @param Wh is matrix defining how previous output is transformed to internal gates (i.e. according to above mentioned notation is @f$ W_h @f$)
- @param Wx is matrix defining how current input is transformed to internal gates (i.e. according to above mentioned notation is @f$ W_x @f$)
- @param b is bias vector (i.e. according to above mentioned notation is @f$ b @f$)
- */
- CV_DEPRECATED virtual void setWeights(const Mat &Wh, const Mat &Wx, const Mat &b) = 0;
- /** @brief Specifies shape of output blob which will be [[`T`], `N`] + @p outTailShape.
- * @details If this parameter is empty or unset then @p outTailShape = [`Wh`.size(0)] will be used,
- * where `Wh` is parameter from setWeights().
- */
- virtual void setOutShape(const MatShape &outTailShape = MatShape()) = 0;
- /** @deprecated Use flag `produce_cell_output` in LayerParams.
- * @brief Specifies either interpret first dimension of input blob as timestamp dimenion either as sample.
- *
- * If flag is set to true then shape of input blob will be interpreted as [`T`, `N`, `[data dims]`] where `T` specifies number of timestamps, `N` is number of independent streams.
- * In this case each forward() call will iterate through `T` timestamps and update layer's state `T` times.
- *
- * If flag is set to false then shape of input blob will be interpreted as [`N`, `[data dims]`].
- * In this case each forward() call will make one iteration and produce one timestamp with shape [`N`, `[out dims]`].
- */
- CV_DEPRECATED virtual void setUseTimstampsDim(bool use = true) = 0;
- /** @deprecated Use flag `use_timestamp_dim` in LayerParams.
- * @brief If this flag is set to true then layer will produce @f$ c_t @f$ as second output.
- * @details Shape of the second output is the same as first output.
- */
- CV_DEPRECATED virtual void setProduceCellOutput(bool produce = false) = 0;
- /* In common case it use single input with @f$x_t@f$ values to compute output(s) @f$h_t@f$ (and @f$c_t@f$).
- * @param input should contain packed values @f$x_t@f$
- * @param output contains computed outputs: @f$h_t@f$ (and @f$c_t@f$ if setProduceCellOutput() flag was set to true).
- *
- * If setUseTimstampsDim() is set to true then @p input[0] should has at least two dimensions with the following shape: [`T`, `N`, `[data dims]`],
- * where `T` specifies number of timestamps, `N` is number of independent streams (i.e. @f$ x_{t_0 + t}^{stream} @f$ is stored inside @p input[0][t, stream, ...]).
- *
- * If setUseTimstampsDim() is set to false then @p input[0] should contain single timestamp, its shape should has form [`N`, `[data dims]`] with at least one dimension.
- * (i.e. @f$ x_{t}^{stream} @f$ is stored inside @p input[0][stream, ...]).
- */
- int inputNameToIndex(String inputName) CV_OVERRIDE;
- int outputNameToIndex(const String& outputName) CV_OVERRIDE;
- };
- /** @brief Classical recurrent layer
- Accepts two inputs @f$x_t@f$ and @f$h_{t-1}@f$ and compute two outputs @f$o_t@f$ and @f$h_t@f$.
- - input: should contain packed input @f$x_t@f$.
- - output: should contain output @f$o_t@f$ (and @f$h_t@f$ if setProduceHiddenOutput() is set to true).
- input[0] should have shape [`T`, `N`, `data_dims`] where `T` and `N` is number of timestamps and number of independent samples of @f$x_t@f$ respectively.
- output[0] will have shape [`T`, `N`, @f$N_o@f$], where @f$N_o@f$ is number of rows in @f$ W_{xo} @f$ matrix.
- If setProduceHiddenOutput() is set to true then @p output[1] will contain a Mat with shape [`T`, `N`, @f$N_h@f$], where @f$N_h@f$ is number of rows in @f$ W_{hh} @f$ matrix.
- */
- class CV_EXPORTS RNNLayer : public Layer
- {
- public:
- /** Creates instance of RNNLayer */
- static Ptr<RNNLayer> create(const LayerParams& params);
- /** Setups learned weights.
- Recurrent-layer behavior on each step is defined by current input @f$ x_t @f$, previous state @f$ h_t @f$ and learned weights as follows:
- @f{eqnarray*}{
- h_t &= tanh&(W_{hh} h_{t-1} + W_{xh} x_t + b_h), \\
- o_t &= tanh&(W_{ho} h_t + b_o),
- @f}
- @param Wxh is @f$ W_{xh} @f$ matrix
- @param bh is @f$ b_{h} @f$ vector
- @param Whh is @f$ W_{hh} @f$ matrix
- @param Who is @f$ W_{xo} @f$ matrix
- @param bo is @f$ b_{o} @f$ vector
- */
- virtual void setWeights(const Mat &Wxh, const Mat &bh, const Mat &Whh, const Mat &Who, const Mat &bo) = 0;
- /** @brief If this flag is set to true then layer will produce @f$ h_t @f$ as second output.
- * @details Shape of the second output is the same as first output.
- */
- virtual void setProduceHiddenOutput(bool produce = false) = 0;
- };
- class CV_EXPORTS BaseConvolutionLayer : public Layer
- {
- public:
- CV_DEPRECATED_EXTERNAL Size kernel, stride, pad, dilation, adjustPad;
- std::vector<size_t> adjust_pads;
- std::vector<size_t> kernel_size, strides, dilations;
- std::vector<size_t> pads_begin, pads_end;
- String padMode;
- int numOutput;
- };
- class CV_EXPORTS ConvolutionLayer : public BaseConvolutionLayer
- {
- public:
- static Ptr<BaseConvolutionLayer> create(const LayerParams& params);
- };
- class CV_EXPORTS DeconvolutionLayer : public BaseConvolutionLayer
- {
- public:
- static Ptr<BaseConvolutionLayer> create(const LayerParams& params);
- };
- class CV_EXPORTS LRNLayer : public Layer
- {
- public:
- int type;
- int size;
- float alpha, beta, bias;
- bool normBySize;
- static Ptr<LRNLayer> create(const LayerParams& params);
- };
- class CV_EXPORTS PoolingLayer : public Layer
- {
- public:
- int type;
- std::vector<size_t> kernel_size, strides;
- std::vector<size_t> pads_begin, pads_end;
- CV_DEPRECATED_EXTERNAL Size kernel, stride, pad;
- CV_DEPRECATED_EXTERNAL int pad_l, pad_t, pad_r, pad_b;
- bool globalPooling;
- bool computeMaxIdx;
- String padMode;
- bool ceilMode;
- // If true for average pooling with padding, divide an every output region
- // by a whole kernel area. Otherwise exclude zero padded values and divide
- // by number of real values.
- bool avePoolPaddedArea;
- // ROIPooling parameters.
- Size pooledSize;
- float spatialScale;
- // PSROIPooling parameters.
- int psRoiOutChannels;
- static Ptr<PoolingLayer> create(const LayerParams& params);
- };
- class CV_EXPORTS SoftmaxLayer : public Layer
- {
- public:
- bool logSoftMax;
- static Ptr<SoftmaxLayer> create(const LayerParams& params);
- };
- class CV_EXPORTS InnerProductLayer : public Layer
- {
- public:
- int axis;
- static Ptr<InnerProductLayer> create(const LayerParams& params);
- };
- class CV_EXPORTS MVNLayer : public Layer
- {
- public:
- float eps;
- bool normVariance, acrossChannels;
- static Ptr<MVNLayer> create(const LayerParams& params);
- };
- /* Reshaping */
- class CV_EXPORTS ReshapeLayer : public Layer
- {
- public:
- MatShape newShapeDesc;
- Range newShapeRange;
- static Ptr<ReshapeLayer> create(const LayerParams& params);
- };
- class CV_EXPORTS FlattenLayer : public Layer
- {
- public:
- static Ptr<FlattenLayer> create(const LayerParams ¶ms);
- };
- class CV_EXPORTS ConcatLayer : public Layer
- {
- public:
- int axis;
- /**
- * @brief Add zero padding in case of concatenation of blobs with different
- * spatial sizes.
- *
- * Details: https://github.com/torch/nn/blob/master/doc/containers.md#depthconcat
- */
- bool padding;
- static Ptr<ConcatLayer> create(const LayerParams ¶ms);
- };
- class CV_EXPORTS SplitLayer : public Layer
- {
- public:
- int outputsCount; //!< Number of copies that will be produced (is ignored when negative).
- static Ptr<SplitLayer> create(const LayerParams ¶ms);
- };
- /**
- * Slice layer has several modes:
- * 1. Caffe mode
- * @param[in] axis Axis of split operation
- * @param[in] slice_point Array of split points
- *
- * Number of output blobs equals to number of split points plus one. The
- * first blob is a slice on input from 0 to @p slice_point[0] - 1 by @p axis,
- * the second output blob is a slice of input from @p slice_point[0] to
- * @p slice_point[1] - 1 by @p axis and the last output blob is a slice of
- * input from @p slice_point[-1] up to the end of @p axis size.
- *
- * 2. TensorFlow mode
- * @param begin Vector of start indices
- * @param size Vector of sizes
- *
- * More convenient numpy-like slice. One and only output blob
- * is a slice `input[begin[0]:begin[0]+size[0], begin[1]:begin[1]+size[1], ...]`
- *
- * 3. Torch mode
- * @param axis Axis of split operation
- *
- * Split input blob on the equal parts by @p axis.
- */
- class CV_EXPORTS SliceLayer : public Layer
- {
- public:
- /**
- * @brief Vector of slice ranges.
- *
- * The first dimension equals number of output blobs.
- * Inner vector has slice ranges for the first number of input dimensions.
- */
- std::vector<std::vector<Range> > sliceRanges;
- int axis;
- int num_split;
- static Ptr<SliceLayer> create(const LayerParams ¶ms);
- };
- class CV_EXPORTS PermuteLayer : public Layer
- {
- public:
- static Ptr<PermuteLayer> create(const LayerParams& params);
- };
- /**
- * Permute channels of 4-dimensional input blob.
- * @param group Number of groups to split input channels and pick in turns
- * into output blob.
- *
- * \f[ groupSize = \frac{number\ of\ channels}{group} \f]
- * \f[ output(n, c, h, w) = input(n, groupSize \times (c \% group) + \lfloor \frac{c}{group} \rfloor, h, w) \f]
- * Read more at https://arxiv.org/pdf/1707.01083.pdf
- */
- class CV_EXPORTS ShuffleChannelLayer : public Layer
- {
- public:
- static Ptr<Layer> create(const LayerParams& params);
- int group;
- };
- /**
- * @brief Adds extra values for specific axes.
- * @param paddings Vector of paddings in format
- * @code
- * [ pad_before, pad_after, // [0]th dimension
- * pad_before, pad_after, // [1]st dimension
- * ...
- * pad_before, pad_after ] // [n]th dimension
- * @endcode
- * that represents number of padded values at every dimension
- * starting from the first one. The rest of dimensions won't
- * be padded.
- * @param value Value to be padded. Defaults to zero.
- * @param type Padding type: 'constant', 'reflect'
- * @param input_dims Torch's parameter. If @p input_dims is not equal to the
- * actual input dimensionality then the `[0]th` dimension
- * is considered as a batch dimension and @p paddings are shifted
- * to a one dimension. Defaults to `-1` that means padding
- * corresponding to @p paddings.
- */
- class CV_EXPORTS PaddingLayer : public Layer
- {
- public:
- static Ptr<PaddingLayer> create(const LayerParams& params);
- };
- /* Activations */
- class CV_EXPORTS ActivationLayer : public Layer
- {
- public:
- virtual void forwardSlice(const float* src, float* dst, int len,
- size_t outPlaneSize, int cn0, int cn1) const = 0;
- };
- class CV_EXPORTS ReLULayer : public ActivationLayer
- {
- public:
- float negativeSlope;
- static Ptr<ReLULayer> create(const LayerParams ¶ms);
- };
- class CV_EXPORTS ReLU6Layer : public ActivationLayer
- {
- public:
- float minValue, maxValue;
- static Ptr<ReLU6Layer> create(const LayerParams ¶ms);
- };
- class CV_EXPORTS ChannelsPReLULayer : public ActivationLayer
- {
- public:
- static Ptr<Layer> create(const LayerParams& params);
- };
- class CV_EXPORTS ELULayer : public ActivationLayer
- {
- public:
- static Ptr<ELULayer> create(const LayerParams ¶ms);
- };
- class CV_EXPORTS TanHLayer : public ActivationLayer
- {
- public:
- static Ptr<TanHLayer> create(const LayerParams ¶ms);
- };
- class CV_EXPORTS SigmoidLayer : public ActivationLayer
- {
- public:
- static Ptr<SigmoidLayer> create(const LayerParams ¶ms);
- };
- class CV_EXPORTS BNLLLayer : public ActivationLayer
- {
- public:
- static Ptr<BNLLLayer> create(const LayerParams ¶ms);
- };
- class CV_EXPORTS AbsLayer : public ActivationLayer
- {
- public:
- static Ptr<AbsLayer> create(const LayerParams ¶ms);
- };
- class CV_EXPORTS PowerLayer : public ActivationLayer
- {
- public:
- float power, scale, shift;
- static Ptr<PowerLayer> create(const LayerParams ¶ms);
- };
- /* Layers used in semantic segmentation */
- class CV_EXPORTS CropLayer : public Layer
- {
- public:
- static Ptr<Layer> create(const LayerParams ¶ms);
- };
- class CV_EXPORTS EltwiseLayer : public Layer
- {
- public:
- static Ptr<EltwiseLayer> create(const LayerParams ¶ms);
- };
- class CV_EXPORTS BatchNormLayer : public ActivationLayer
- {
- public:
- bool hasWeights, hasBias;
- float epsilon;
- static Ptr<BatchNormLayer> create(const LayerParams ¶ms);
- };
- class CV_EXPORTS MaxUnpoolLayer : public Layer
- {
- public:
- Size poolKernel;
- Size poolPad;
- Size poolStride;
- static Ptr<MaxUnpoolLayer> create(const LayerParams ¶ms);
- };
- class CV_EXPORTS ScaleLayer : public Layer
- {
- public:
- bool hasBias;
- int axis;
- static Ptr<ScaleLayer> create(const LayerParams& params);
- };
- class CV_EXPORTS ShiftLayer : public Layer
- {
- public:
- static Ptr<Layer> create(const LayerParams& params);
- };
- class CV_EXPORTS PriorBoxLayer : public Layer
- {
- public:
- static Ptr<PriorBoxLayer> create(const LayerParams& params);
- };
- class CV_EXPORTS ReorgLayer : public Layer
- {
- public:
- static Ptr<ReorgLayer> create(const LayerParams& params);
- };
- class CV_EXPORTS RegionLayer : public Layer
- {
- public:
- static Ptr<RegionLayer> create(const LayerParams& params);
- };
- class CV_EXPORTS DetectionOutputLayer : public Layer
- {
- public:
- static Ptr<DetectionOutputLayer> create(const LayerParams& params);
- };
- /**
- * @brief \f$ L_p \f$ - normalization layer.
- * @param p Normalization factor. The most common `p = 1` for \f$ L_1 \f$ -
- * normalization or `p = 2` for \f$ L_2 \f$ - normalization or a custom one.
- * @param eps Parameter \f$ \epsilon \f$ to prevent a division by zero.
- * @param across_spatial If true, normalize an input across all non-batch dimensions.
- * Otherwise normalize an every channel separately.
- *
- * Across spatial:
- * @f[
- * norm = \sqrt[p]{\epsilon + \sum_{x, y, c} |src(x, y, c)|^p } \\
- * dst(x, y, c) = \frac{ src(x, y, c) }{norm}
- * @f]
- *
- * Channel wise normalization:
- * @f[
- * norm(c) = \sqrt[p]{\epsilon + \sum_{x, y} |src(x, y, c)|^p } \\
- * dst(x, y, c) = \frac{ src(x, y, c) }{norm(c)}
- * @f]
- *
- * Where `x, y` - spatial coordinates, `c` - channel.
- *
- * An every sample in the batch is normalized separately. Optionally,
- * output is scaled by the trained parameters.
- */
- class CV_EXPORTS NormalizeBBoxLayer : public Layer
- {
- public:
- float pnorm, epsilon;
- CV_DEPRECATED_EXTERNAL bool acrossSpatial;
- static Ptr<NormalizeBBoxLayer> create(const LayerParams& params);
- };
- /**
- * @brief Resize input 4-dimensional blob by nearest neighbor or bilinear strategy.
- *
- * Layer is used to support TensorFlow's resize_nearest_neighbor and resize_bilinear ops.
- */
- class CV_EXPORTS ResizeLayer : public Layer
- {
- public:
- static Ptr<ResizeLayer> create(const LayerParams& params);
- };
- /**
- * @brief Bilinear resize layer from https://github.com/cdmh/deeplab-public-ver2
- *
- * It differs from @ref ResizeLayer in output shape and resize scales computations.
- */
- class CV_EXPORTS InterpLayer : public Layer
- {
- public:
- static Ptr<Layer> create(const LayerParams& params);
- };
- class CV_EXPORTS ProposalLayer : public Layer
- {
- public:
- static Ptr<ProposalLayer> create(const LayerParams& params);
- };
- class CV_EXPORTS CropAndResizeLayer : public Layer
- {
- public:
- static Ptr<Layer> create(const LayerParams& params);
- };
- //! @}
- //! @}
- CV__DNN_INLINE_NS_END
- }
- }
- #endif
|