123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Copyright (C) 2015, Itseez Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_CORE_OPERATIONS_HPP
- #define OPENCV_CORE_OPERATIONS_HPP
- #ifndef __cplusplus
- # error operations.hpp header must be compiled as C++
- #endif
- #include <cstdio>
- #if defined(__GNUC__) || defined(__clang__) // at least GCC 3.1+, clang 3.5+
- # if defined(__MINGW_PRINTF_FORMAT) // https://sourceforge.net/p/mingw-w64/wiki2/gnu%20printf/.
- # define CV_FORMAT_PRINTF(string_idx, first_to_check) __attribute__ ((format (__MINGW_PRINTF_FORMAT, string_idx, first_to_check)))
- # else
- # define CV_FORMAT_PRINTF(string_idx, first_to_check) __attribute__ ((format (printf, string_idx, first_to_check)))
- # endif
- #else
- # define CV_FORMAT_PRINTF(A, B)
- #endif
- //! @cond IGNORED
- namespace cv
- {
- ////////////////////////////// Matx methods depending on core API /////////////////////////////
- namespace internal
- {
- template<typename _Tp, int m, int n> struct Matx_FastInvOp
- {
- bool operator()(const Matx<_Tp, m, n>& a, Matx<_Tp, n, m>& b, int method) const
- {
- return invert(a, b, method) != 0;
- }
- };
- template<typename _Tp, int m> struct Matx_FastInvOp<_Tp, m, m>
- {
- bool operator()(const Matx<_Tp, m, m>& a, Matx<_Tp, m, m>& b, int method) const
- {
- if (method == DECOMP_LU || method == DECOMP_CHOLESKY)
- {
- Matx<_Tp, m, m> temp = a;
- // assume that b is all 0's on input => make it a unity matrix
- for (int i = 0; i < m; i++)
- b(i, i) = (_Tp)1;
- if (method == DECOMP_CHOLESKY)
- return Cholesky(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m);
- return LU(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m) != 0;
- }
- else
- {
- return invert(a, b, method) != 0;
- }
- }
- };
- template<typename _Tp> struct Matx_FastInvOp<_Tp, 2, 2>
- {
- bool operator()(const Matx<_Tp, 2, 2>& a, Matx<_Tp, 2, 2>& b, int /*method*/) const
- {
- _Tp d = (_Tp)determinant(a);
- if (d == 0)
- return false;
- d = 1/d;
- b(1,1) = a(0,0)*d;
- b(0,0) = a(1,1)*d;
- b(0,1) = -a(0,1)*d;
- b(1,0) = -a(1,0)*d;
- return true;
- }
- };
- template<typename _Tp> struct Matx_FastInvOp<_Tp, 3, 3>
- {
- bool operator()(const Matx<_Tp, 3, 3>& a, Matx<_Tp, 3, 3>& b, int /*method*/) const
- {
- _Tp d = (_Tp)determinant(a);
- if (d == 0)
- return false;
- d = 1/d;
- b(0,0) = (a(1,1) * a(2,2) - a(1,2) * a(2,1)) * d;
- b(0,1) = (a(0,2) * a(2,1) - a(0,1) * a(2,2)) * d;
- b(0,2) = (a(0,1) * a(1,2) - a(0,2) * a(1,1)) * d;
- b(1,0) = (a(1,2) * a(2,0) - a(1,0) * a(2,2)) * d;
- b(1,1) = (a(0,0) * a(2,2) - a(0,2) * a(2,0)) * d;
- b(1,2) = (a(0,2) * a(1,0) - a(0,0) * a(1,2)) * d;
- b(2,0) = (a(1,0) * a(2,1) - a(1,1) * a(2,0)) * d;
- b(2,1) = (a(0,1) * a(2,0) - a(0,0) * a(2,1)) * d;
- b(2,2) = (a(0,0) * a(1,1) - a(0,1) * a(1,0)) * d;
- return true;
- }
- };
- template<typename _Tp, int m, int l, int n> struct Matx_FastSolveOp
- {
- bool operator()(const Matx<_Tp, m, l>& a, const Matx<_Tp, m, n>& b,
- Matx<_Tp, l, n>& x, int method) const
- {
- return cv::solve(a, b, x, method);
- }
- };
- template<typename _Tp, int m, int n> struct Matx_FastSolveOp<_Tp, m, m, n>
- {
- bool operator()(const Matx<_Tp, m, m>& a, const Matx<_Tp, m, n>& b,
- Matx<_Tp, m, n>& x, int method) const
- {
- if (method == DECOMP_LU || method == DECOMP_CHOLESKY)
- {
- Matx<_Tp, m, m> temp = a;
- x = b;
- if( method == DECOMP_CHOLESKY )
- return Cholesky(temp.val, m*sizeof(_Tp), m, x.val, n*sizeof(_Tp), n);
- return LU(temp.val, m*sizeof(_Tp), m, x.val, n*sizeof(_Tp), n) != 0;
- }
- else
- {
- return cv::solve(a, b, x, method);
- }
- }
- };
- template<typename _Tp> struct Matx_FastSolveOp<_Tp, 2, 2, 1>
- {
- bool operator()(const Matx<_Tp, 2, 2>& a, const Matx<_Tp, 2, 1>& b,
- Matx<_Tp, 2, 1>& x, int) const
- {
- _Tp d = (_Tp)determinant(a);
- if (d == 0)
- return false;
- d = 1/d;
- x(0) = (b(0)*a(1,1) - b(1)*a(0,1))*d;
- x(1) = (b(1)*a(0,0) - b(0)*a(1,0))*d;
- return true;
- }
- };
- template<typename _Tp> struct Matx_FastSolveOp<_Tp, 3, 3, 1>
- {
- bool operator()(const Matx<_Tp, 3, 3>& a, const Matx<_Tp, 3, 1>& b,
- Matx<_Tp, 3, 1>& x, int) const
- {
- _Tp d = (_Tp)determinant(a);
- if (d == 0)
- return false;
- d = 1/d;
- x(0) = d*(b(0)*(a(1,1)*a(2,2) - a(1,2)*a(2,1)) -
- a(0,1)*(b(1)*a(2,2) - a(1,2)*b(2)) +
- a(0,2)*(b(1)*a(2,1) - a(1,1)*b(2)));
- x(1) = d*(a(0,0)*(b(1)*a(2,2) - a(1,2)*b(2)) -
- b(0)*(a(1,0)*a(2,2) - a(1,2)*a(2,0)) +
- a(0,2)*(a(1,0)*b(2) - b(1)*a(2,0)));
- x(2) = d*(a(0,0)*(a(1,1)*b(2) - b(1)*a(2,1)) -
- a(0,1)*(a(1,0)*b(2) - b(1)*a(2,0)) +
- b(0)*(a(1,0)*a(2,1) - a(1,1)*a(2,0)));
- return true;
- }
- };
- } // internal
- template<typename _Tp, int m, int n> inline
- Matx<_Tp,m,n> Matx<_Tp,m,n>::randu(_Tp a, _Tp b)
- {
- Matx<_Tp,m,n> M;
- cv::randu(M, Scalar(a), Scalar(b));
- return M;
- }
- template<typename _Tp, int m, int n> inline
- Matx<_Tp,m,n> Matx<_Tp,m,n>::randn(_Tp a, _Tp b)
- {
- Matx<_Tp,m,n> M;
- cv::randn(M, Scalar(a), Scalar(b));
- return M;
- }
- template<typename _Tp, int m, int n> inline
- Matx<_Tp, n, m> Matx<_Tp, m, n>::inv(int method, bool *p_is_ok /*= NULL*/) const
- {
- Matx<_Tp, n, m> b;
- bool ok = cv::internal::Matx_FastInvOp<_Tp, m, n>()(*this, b, method);
- if (p_is_ok) *p_is_ok = ok;
- return ok ? b : Matx<_Tp, n, m>::zeros();
- }
- template<typename _Tp, int m, int n> template<int l> inline
- Matx<_Tp, n, l> Matx<_Tp, m, n>::solve(const Matx<_Tp, m, l>& rhs, int method) const
- {
- Matx<_Tp, n, l> x;
- bool ok = cv::internal::Matx_FastSolveOp<_Tp, m, n, l>()(*this, rhs, x, method);
- return ok ? x : Matx<_Tp, n, l>::zeros();
- }
- ////////////////////////// Augmenting algebraic & logical operations //////////////////////////
- #define CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \
- static inline A& operator op (A& a, const B& b) { cvop; return a; }
- #define CV_MAT_AUG_OPERATOR(op, cvop, A, B) \
- CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \
- CV_MAT_AUG_OPERATOR1(op, cvop, const A, B)
- #define CV_MAT_AUG_OPERATOR_T(op, cvop, A, B) \
- template<typename _Tp> CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \
- template<typename _Tp> CV_MAT_AUG_OPERATOR1(op, cvop, const A, B)
- #define CV_MAT_AUG_OPERATOR_TN(op, cvop, A) \
- template<typename _Tp, int m, int n> static inline A& operator op (A& a, const Matx<_Tp,m,n>& b) { cvop; return a; } \
- template<typename _Tp, int m, int n> static inline const A& operator op (const A& a, const Matx<_Tp,m,n>& b) { cvop; return a; }
- CV_MAT_AUG_OPERATOR (+=, cv::add(a,b,a), Mat, Mat)
- CV_MAT_AUG_OPERATOR (+=, cv::add(a,b,a), Mat, Scalar)
- CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Mat)
- CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Scalar)
- CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Mat_<_Tp>)
- CV_MAT_AUG_OPERATOR_TN(+=, cv::add(a,Mat(b),a), Mat)
- CV_MAT_AUG_OPERATOR_TN(+=, cv::add(a,Mat(b),a), Mat_<_Tp>)
- CV_MAT_AUG_OPERATOR (-=, cv::subtract(a,b,a), Mat, Mat)
- CV_MAT_AUG_OPERATOR (-=, cv::subtract(a,b,a), Mat, Scalar)
- CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Mat)
- CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Scalar)
- CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Mat_<_Tp>)
- CV_MAT_AUG_OPERATOR_TN(-=, cv::subtract(a,Mat(b),a), Mat)
- CV_MAT_AUG_OPERATOR_TN(-=, cv::subtract(a,Mat(b),a), Mat_<_Tp>)
- CV_MAT_AUG_OPERATOR (*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat, Mat)
- CV_MAT_AUG_OPERATOR_T(*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat_<_Tp>, Mat)
- CV_MAT_AUG_OPERATOR_T(*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat_<_Tp>, Mat_<_Tp>)
- CV_MAT_AUG_OPERATOR (*=, a.convertTo(a, -1, b), Mat, double)
- CV_MAT_AUG_OPERATOR_T(*=, a.convertTo(a, -1, b), Mat_<_Tp>, double)
- CV_MAT_AUG_OPERATOR_TN(*=, cv::gemm(a, Mat(b), 1, Mat(), 0, a, 0), Mat)
- CV_MAT_AUG_OPERATOR_TN(*=, cv::gemm(a, Mat(b), 1, Mat(), 0, a, 0), Mat_<_Tp>)
- CV_MAT_AUG_OPERATOR (/=, cv::divide(a,b,a), Mat, Mat)
- CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a,b,a), Mat_<_Tp>, Mat)
- CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a,b,a), Mat_<_Tp>, Mat_<_Tp>)
- CV_MAT_AUG_OPERATOR (/=, a.convertTo((Mat&)a, -1, 1./b), Mat, double)
- CV_MAT_AUG_OPERATOR_T(/=, a.convertTo((Mat&)a, -1, 1./b), Mat_<_Tp>, double)
- CV_MAT_AUG_OPERATOR_TN(/=, cv::divide(a, Mat(b), a), Mat)
- CV_MAT_AUG_OPERATOR_TN(/=, cv::divide(a, Mat(b), a), Mat_<_Tp>)
- CV_MAT_AUG_OPERATOR (&=, cv::bitwise_and(a,b,a), Mat, Mat)
- CV_MAT_AUG_OPERATOR (&=, cv::bitwise_and(a,b,a), Mat, Scalar)
- CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Mat)
- CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Scalar)
- CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Mat_<_Tp>)
- CV_MAT_AUG_OPERATOR_TN(&=, cv::bitwise_and(a, Mat(b), a), Mat)
- CV_MAT_AUG_OPERATOR_TN(&=, cv::bitwise_and(a, Mat(b), a), Mat_<_Tp>)
- CV_MAT_AUG_OPERATOR (|=, cv::bitwise_or(a,b,a), Mat, Mat)
- CV_MAT_AUG_OPERATOR (|=, cv::bitwise_or(a,b,a), Mat, Scalar)
- CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Mat)
- CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Scalar)
- CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Mat_<_Tp>)
- CV_MAT_AUG_OPERATOR_TN(|=, cv::bitwise_or(a, Mat(b), a), Mat)
- CV_MAT_AUG_OPERATOR_TN(|=, cv::bitwise_or(a, Mat(b), a), Mat_<_Tp>)
- CV_MAT_AUG_OPERATOR (^=, cv::bitwise_xor(a,b,a), Mat, Mat)
- CV_MAT_AUG_OPERATOR (^=, cv::bitwise_xor(a,b,a), Mat, Scalar)
- CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Mat)
- CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Scalar)
- CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Mat_<_Tp>)
- CV_MAT_AUG_OPERATOR_TN(^=, cv::bitwise_xor(a, Mat(b), a), Mat)
- CV_MAT_AUG_OPERATOR_TN(^=, cv::bitwise_xor(a, Mat(b), a), Mat_<_Tp>)
- #undef CV_MAT_AUG_OPERATOR_TN
- #undef CV_MAT_AUG_OPERATOR_T
- #undef CV_MAT_AUG_OPERATOR
- #undef CV_MAT_AUG_OPERATOR1
- ///////////////////////////////////////////// SVD /////////////////////////////////////////////
- inline SVD::SVD() {}
- inline SVD::SVD( InputArray m, int flags ) { operator ()(m, flags); }
- inline void SVD::solveZ( InputArray m, OutputArray _dst )
- {
- Mat mtx = m.getMat();
- SVD svd(mtx, (mtx.rows >= mtx.cols ? 0 : SVD::FULL_UV));
- _dst.create(svd.vt.cols, 1, svd.vt.type());
- Mat dst = _dst.getMat();
- svd.vt.row(svd.vt.rows-1).reshape(1,svd.vt.cols).copyTo(dst);
- }
- template<typename _Tp, int m, int n, int nm> inline void
- SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt )
- {
- CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector.");
- Mat _a(a, false), _u(u, false), _w(w, false), _vt(vt, false);
- SVD::compute(_a, _w, _u, _vt);
- CV_Assert(_w.data == (uchar*)&w.val[0] && _u.data == (uchar*)&u.val[0] && _vt.data == (uchar*)&vt.val[0]);
- }
- template<typename _Tp, int m, int n, int nm> inline void
- SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w )
- {
- CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector.");
- Mat _a(a, false), _w(w, false);
- SVD::compute(_a, _w);
- CV_Assert(_w.data == (uchar*)&w.val[0]);
- }
- template<typename _Tp, int m, int n, int nm, int nb> inline void
- SVD::backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u,
- const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs,
- Matx<_Tp, n, nb>& dst )
- {
- CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector.");
- Mat _u(u, false), _w(w, false), _vt(vt, false), _rhs(rhs, false), _dst(dst, false);
- SVD::backSubst(_w, _u, _vt, _rhs, _dst);
- CV_Assert(_dst.data == (uchar*)&dst.val[0]);
- }
- /////////////////////////////////// Multiply-with-Carry RNG ///////////////////////////////////
- inline RNG::RNG() { state = 0xffffffff; }
- inline RNG::RNG(uint64 _state) { state = _state ? _state : 0xffffffff; }
- inline RNG::operator uchar() { return (uchar)next(); }
- inline RNG::operator schar() { return (schar)next(); }
- inline RNG::operator ushort() { return (ushort)next(); }
- inline RNG::operator short() { return (short)next(); }
- inline RNG::operator int() { return (int)next(); }
- inline RNG::operator unsigned() { return next(); }
- inline RNG::operator float() { return next()*2.3283064365386962890625e-10f; }
- inline RNG::operator double() { unsigned t = next(); return (((uint64)t << 32) | next()) * 5.4210108624275221700372640043497e-20; }
- inline unsigned RNG::operator ()(unsigned N) { return (unsigned)uniform(0,N); }
- inline unsigned RNG::operator ()() { return next(); }
- inline int RNG::uniform(int a, int b) { return a == b ? a : (int)(next() % (b - a) + a); }
- inline float RNG::uniform(float a, float b) { return ((float)*this)*(b - a) + a; }
- inline double RNG::uniform(double a, double b) { return ((double)*this)*(b - a) + a; }
- inline bool RNG::operator ==(const RNG& other) const { return state == other.state; }
- inline unsigned RNG::next()
- {
- state = (uint64)(unsigned)state* /*CV_RNG_COEFF*/ 4164903690U + (unsigned)(state >> 32);
- return (unsigned)state;
- }
- //! returns the next uniformly-distributed random number of the specified type
- template<typename _Tp> static inline _Tp randu()
- {
- return (_Tp)theRNG();
- }
- ///////////////////////////////// Formatted string generation /////////////////////////////////
- /** @brief Returns a text string formatted using the printf-like expression.
- The function acts like sprintf but forms and returns an STL string. It can be used to form an error
- message in the Exception constructor.
- @param fmt printf-compatible formatting specifiers.
- **Note**:
- |Type|Specifier|
- |-|-|
- |`const char*`|`%s`|
- |`char`|`%c`|
- |`float` / `double`|`%f`,`%g`|
- |`int`, `long`, `long long`|`%d`, `%ld`, ``%lld`|
- |`unsigned`, `unsigned long`, `unsigned long long`|`%u`, `%lu`, `%llu`|
- |`uint64` -> `uintmax_t`, `int64` -> `intmax_t`|`%ju`, `%jd`|
- |`size_t`|`%zu`|
- */
- CV_EXPORTS String format( const char* fmt, ... ) CV_FORMAT_PRINTF(1, 2);
- ///////////////////////////////// Formatted output of cv::Mat /////////////////////////////////
- static inline
- Ptr<Formatted> format(InputArray mtx, Formatter::FormatType fmt)
- {
- return Formatter::get(fmt)->format(mtx.getMat());
- }
- static inline
- int print(Ptr<Formatted> fmtd, FILE* stream = stdout)
- {
- int written = 0;
- fmtd->reset();
- for(const char* str = fmtd->next(); str; str = fmtd->next())
- written += fputs(str, stream);
- return written;
- }
- static inline
- int print(const Mat& mtx, FILE* stream = stdout)
- {
- return print(Formatter::get()->format(mtx), stream);
- }
- static inline
- int print(const UMat& mtx, FILE* stream = stdout)
- {
- return print(Formatter::get()->format(mtx.getMat(ACCESS_READ)), stream);
- }
- template<typename _Tp> static inline
- int print(const std::vector<Point_<_Tp> >& vec, FILE* stream = stdout)
- {
- return print(Formatter::get()->format(Mat(vec)), stream);
- }
- template<typename _Tp> static inline
- int print(const std::vector<Point3_<_Tp> >& vec, FILE* stream = stdout)
- {
- return print(Formatter::get()->format(Mat(vec)), stream);
- }
- template<typename _Tp, int m, int n> static inline
- int print(const Matx<_Tp, m, n>& matx, FILE* stream = stdout)
- {
- return print(Formatter::get()->format(cv::Mat(matx)), stream);
- }
- //! @endcond
- /****************************************************************************************\
- * Auxiliary algorithms *
- \****************************************************************************************/
- /** @brief Splits an element set into equivalency classes.
- The generic function partition implements an \f$O(N^2)\f$ algorithm for splitting a set of \f$N\f$ elements
- into one or more equivalency classes, as described in
- <http://en.wikipedia.org/wiki/Disjoint-set_data_structure> . The function returns the number of
- equivalency classes.
- @param _vec Set of elements stored as a vector.
- @param labels Output vector of labels. It contains as many elements as vec. Each label labels[i] is
- a 0-based cluster index of `vec[i]`.
- @param predicate Equivalence predicate (pointer to a boolean function of two arguments or an
- instance of the class that has the method bool operator()(const _Tp& a, const _Tp& b) ). The
- predicate returns true when the elements are certainly in the same class, and returns false if they
- may or may not be in the same class.
- @ingroup core_cluster
- */
- template<typename _Tp, class _EqPredicate> int
- partition( const std::vector<_Tp>& _vec, std::vector<int>& labels,
- _EqPredicate predicate=_EqPredicate())
- {
- int i, j, N = (int)_vec.size();
- const _Tp* vec = &_vec[0];
- const int PARENT=0;
- const int RANK=1;
- std::vector<int> _nodes(N*2);
- int (*nodes)[2] = (int(*)[2])&_nodes[0];
- // The first O(N) pass: create N single-vertex trees
- for(i = 0; i < N; i++)
- {
- nodes[i][PARENT]=-1;
- nodes[i][RANK] = 0;
- }
- // The main O(N^2) pass: merge connected components
- for( i = 0; i < N; i++ )
- {
- int root = i;
- // find root
- while( nodes[root][PARENT] >= 0 )
- root = nodes[root][PARENT];
- for( j = 0; j < N; j++ )
- {
- if( i == j || !predicate(vec[i], vec[j]))
- continue;
- int root2 = j;
- while( nodes[root2][PARENT] >= 0 )
- root2 = nodes[root2][PARENT];
- if( root2 != root )
- {
- // unite both trees
- int rank = nodes[root][RANK], rank2 = nodes[root2][RANK];
- if( rank > rank2 )
- nodes[root2][PARENT] = root;
- else
- {
- nodes[root][PARENT] = root2;
- nodes[root2][RANK] += rank == rank2;
- root = root2;
- }
- CV_Assert( nodes[root][PARENT] < 0 );
- int k = j, parent;
- // compress the path from node2 to root
- while( (parent = nodes[k][PARENT]) >= 0 )
- {
- nodes[k][PARENT] = root;
- k = parent;
- }
- // compress the path from node to root
- k = i;
- while( (parent = nodes[k][PARENT]) >= 0 )
- {
- nodes[k][PARENT] = root;
- k = parent;
- }
- }
- }
- }
- // Final O(N) pass: enumerate classes
- labels.resize(N);
- int nclasses = 0;
- for( i = 0; i < N; i++ )
- {
- int root = i;
- while( nodes[root][PARENT] >= 0 )
- root = nodes[root][PARENT];
- // re-use the rank as the class label
- if( nodes[root][RANK] >= 0 )
- nodes[root][RANK] = ~nclasses++;
- labels[i] = ~nodes[root][RANK];
- }
- return nclasses;
- }
- } // cv
- #endif
|