123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_CORE_AFFINE3_HPP
- #define OPENCV_CORE_AFFINE3_HPP
- #ifdef __cplusplus
- #include <opencv2/core.hpp>
- namespace cv
- {
- //! @addtogroup core
- //! @{
- /** @brief Affine transform
- *
- * It represents a 4x4 homogeneous transformation matrix \f$T\f$
- *
- * \f[T =
- * \begin{bmatrix}
- * R & t\\
- * 0 & 1\\
- * \end{bmatrix}
- * \f]
- *
- * where \f$R\f$ is a 3x3 rotation matrix and \f$t\f$ is a 3x1 translation vector.
- *
- * You can specify \f$R\f$ either by a 3x3 rotation matrix or by a 3x1 rotation vector,
- * which is converted to a 3x3 rotation matrix by the Rodrigues formula.
- *
- * To construct a matrix \f$T\f$ representing first rotation around the axis \f$r\f$ with rotation
- * angle \f$|r|\f$ in radian (right hand rule) and then translation by the vector \f$t\f$, you can use
- *
- * @code
- * cv::Vec3f r, t;
- * cv::Affine3f T(r, t);
- * @endcode
- *
- * If you already have the rotation matrix \f$R\f$, then you can use
- *
- * @code
- * cv::Matx33f R;
- * cv::Affine3f T(R, t);
- * @endcode
- *
- * To extract the rotation matrix \f$R\f$ from \f$T\f$, use
- *
- * @code
- * cv::Matx33f R = T.rotation();
- * @endcode
- *
- * To extract the translation vector \f$t\f$ from \f$T\f$, use
- *
- * @code
- * cv::Vec3f t = T.translation();
- * @endcode
- *
- * To extract the rotation vector \f$r\f$ from \f$T\f$, use
- *
- * @code
- * cv::Vec3f r = T.rvec();
- * @endcode
- *
- * Note that since the mapping from rotation vectors to rotation matrices
- * is many to one. The returned rotation vector is not necessarily the one
- * you used before to set the matrix.
- *
- * If you have two transformations \f$T = T_1 * T_2\f$, use
- *
- * @code
- * cv::Affine3f T, T1, T2;
- * T = T2.concatenate(T1);
- * @endcode
- *
- * To get the inverse transform of \f$T\f$, use
- *
- * @code
- * cv::Affine3f T, T_inv;
- * T_inv = T.inv();
- * @endcode
- *
- */
- template<typename T>
- class Affine3
- {
- public:
- typedef T float_type;
- typedef Matx<float_type, 3, 3> Mat3;
- typedef Matx<float_type, 4, 4> Mat4;
- typedef Vec<float_type, 3> Vec3;
- //! Default constructor. It represents a 4x4 identity matrix.
- Affine3();
- //! Augmented affine matrix
- Affine3(const Mat4& affine);
- /**
- * The resulting 4x4 matrix is
- *
- * \f[
- * \begin{bmatrix}
- * R & t\\
- * 0 & 1\\
- * \end{bmatrix}
- * \f]
- *
- * @param R 3x3 rotation matrix.
- * @param t 3x1 translation vector.
- */
- Affine3(const Mat3& R, const Vec3& t = Vec3::all(0));
- /**
- * Rodrigues vector.
- *
- * The last row of the current matrix is set to [0,0,0,1].
- *
- * @param rvec 3x1 rotation vector. Its direction indicates the rotation axis and its length
- * indicates the rotation angle in radian (using right hand rule).
- * @param t 3x1 translation vector.
- */
- Affine3(const Vec3& rvec, const Vec3& t = Vec3::all(0));
- /**
- * Combines all constructors above. Supports 4x4, 3x4, 3x3, 1x3, 3x1 sizes of data matrix.
- *
- * The last row of the current matrix is set to [0,0,0,1] when data is not 4x4.
- *
- * @param data 1-channel matrix.
- * when it is 4x4, it is copied to the current matrix and t is not used.
- * When it is 3x4, it is copied to the upper part 3x4 of the current matrix and t is not used.
- * When it is 3x3, it is copied to the upper left 3x3 part of the current matrix.
- * When it is 3x1 or 1x3, it is treated as a rotation vector and the Rodrigues formula is used
- * to compute a 3x3 rotation matrix.
- * @param t 3x1 translation vector. It is used only when data is neither 4x4 nor 3x4.
- */
- explicit Affine3(const Mat& data, const Vec3& t = Vec3::all(0));
- //! From 16-element array
- explicit Affine3(const float_type* vals);
- //! Create an 4x4 identity transform
- static Affine3 Identity();
- /**
- * Rotation matrix.
- *
- * Copy the rotation matrix to the upper left 3x3 part of the current matrix.
- * The remaining elements of the current matrix are not changed.
- *
- * @param R 3x3 rotation matrix.
- *
- */
- void rotation(const Mat3& R);
- /**
- * Rodrigues vector.
- *
- * It sets the upper left 3x3 part of the matrix. The remaining part is unaffected.
- *
- * @param rvec 3x1 rotation vector. The direction indicates the rotation axis and
- * its length indicates the rotation angle in radian (using the right thumb convention).
- */
- void rotation(const Vec3& rvec);
- /**
- * Combines rotation methods above. Supports 3x3, 1x3, 3x1 sizes of data matrix.
- *
- * It sets the upper left 3x3 part of the matrix. The remaining part is unaffected.
- *
- * @param data 1-channel matrix.
- * When it is a 3x3 matrix, it sets the upper left 3x3 part of the current matrix.
- * When it is a 1x3 or 3x1 matrix, it is used as a rotation vector. The Rodrigues formula
- * is used to compute the rotation matrix and sets the upper left 3x3 part of the current matrix.
- */
- void rotation(const Mat& data);
- /**
- * Copy the 3x3 matrix L to the upper left part of the current matrix
- *
- * It sets the upper left 3x3 part of the matrix. The remaining part is unaffected.
- *
- * @param L 3x3 matrix.
- */
- void linear(const Mat3& L);
- /**
- * Copy t to the first three elements of the last column of the current matrix
- *
- * It sets the upper right 3x1 part of the matrix. The remaining part is unaffected.
- *
- * @param t 3x1 translation vector.
- */
- void translation(const Vec3& t);
- //! @return the upper left 3x3 part
- Mat3 rotation() const;
- //! @return the upper left 3x3 part
- Mat3 linear() const;
- //! @return the upper right 3x1 part
- Vec3 translation() const;
- //! Rodrigues vector.
- //! @return a vector representing the upper left 3x3 rotation matrix of the current matrix.
- //! @warning Since the mapping between rotation vectors and rotation matrices is many to one,
- //! this function returns only one rotation vector that represents the current rotation matrix,
- //! which is not necessarily the same one set by `rotation(const Vec3& rvec)`.
- Vec3 rvec() const;
- //! @return the inverse of the current matrix.
- Affine3 inv(int method = cv::DECOMP_SVD) const;
- //! a.rotate(R) is equivalent to Affine(R, 0) * a;
- Affine3 rotate(const Mat3& R) const;
- //! a.rotate(rvec) is equivalent to Affine(rvec, 0) * a;
- Affine3 rotate(const Vec3& rvec) const;
- //! a.translate(t) is equivalent to Affine(E, t) * a, where E is an identity matrix
- Affine3 translate(const Vec3& t) const;
- //! a.concatenate(affine) is equivalent to affine * a;
- Affine3 concatenate(const Affine3& affine) const;
- template <typename Y> operator Affine3<Y>() const;
- template <typename Y> Affine3<Y> cast() const;
- Mat4 matrix;
- #if defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H
- Affine3(const Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>& affine);
- Affine3(const Eigen::Transform<T, 3, Eigen::Affine>& affine);
- operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>() const;
- operator Eigen::Transform<T, 3, Eigen::Affine>() const;
- #endif
- };
- template<typename T> static
- Affine3<T> operator*(const Affine3<T>& affine1, const Affine3<T>& affine2);
- //! V is a 3-element vector with member fields x, y and z
- template<typename T, typename V> static
- V operator*(const Affine3<T>& affine, const V& vector);
- typedef Affine3<float> Affine3f;
- typedef Affine3<double> Affine3d;
- static Vec3f operator*(const Affine3f& affine, const Vec3f& vector);
- static Vec3d operator*(const Affine3d& affine, const Vec3d& vector);
- template<typename _Tp> class DataType< Affine3<_Tp> >
- {
- public:
- typedef Affine3<_Tp> value_type;
- typedef Affine3<typename DataType<_Tp>::work_type> work_type;
- typedef _Tp channel_type;
- enum { generic_type = 0,
- channels = 16,
- fmt = traits::SafeFmt<channel_type>::fmt + ((channels - 1) << 8)
- #ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
- ,depth = DataType<channel_type>::depth
- ,type = CV_MAKETYPE(depth, channels)
- #endif
- };
- typedef Vec<channel_type, channels> vec_type;
- };
- namespace traits {
- template<typename _Tp>
- struct Depth< Affine3<_Tp> > { enum { value = Depth<_Tp>::value }; };
- template<typename _Tp>
- struct Type< Affine3<_Tp> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, 16) }; };
- } // namespace
- //! @} core
- }
- //! @cond IGNORED
- ///////////////////////////////////////////////////////////////////////////////////
- // Implementation
- template<typename T> inline
- cv::Affine3<T>::Affine3()
- : matrix(Mat4::eye())
- {}
- template<typename T> inline
- cv::Affine3<T>::Affine3(const Mat4& affine)
- : matrix(affine)
- {}
- template<typename T> inline
- cv::Affine3<T>::Affine3(const Mat3& R, const Vec3& t)
- {
- rotation(R);
- translation(t);
- matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
- matrix.val[15] = 1;
- }
- template<typename T> inline
- cv::Affine3<T>::Affine3(const Vec3& _rvec, const Vec3& t)
- {
- rotation(_rvec);
- translation(t);
- matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
- matrix.val[15] = 1;
- }
- template<typename T> inline
- cv::Affine3<T>::Affine3(const cv::Mat& data, const Vec3& t)
- {
- CV_Assert(data.type() == cv::traits::Type<T>::value);
- CV_Assert(data.channels() == 1);
- if (data.cols == 4 && data.rows == 4)
- {
- data.copyTo(matrix);
- return;
- }
- else if (data.cols == 4 && data.rows == 3)
- {
- rotation(data(Rect(0, 0, 3, 3)));
- translation(data(Rect(3, 0, 1, 3)));
- }
- else
- {
- rotation(data);
- translation(t);
- }
- matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
- matrix.val[15] = 1;
- }
- template<typename T> inline
- cv::Affine3<T>::Affine3(const float_type* vals) : matrix(vals)
- {}
- template<typename T> inline
- cv::Affine3<T> cv::Affine3<T>::Identity()
- {
- return Affine3<T>(cv::Affine3<T>::Mat4::eye());
- }
- template<typename T> inline
- void cv::Affine3<T>::rotation(const Mat3& R)
- {
- linear(R);
- }
- template<typename T> inline
- void cv::Affine3<T>::rotation(const Vec3& _rvec)
- {
- double theta = norm(_rvec);
- if (theta < DBL_EPSILON)
- rotation(Mat3::eye());
- else
- {
- double c = std::cos(theta);
- double s = std::sin(theta);
- double c1 = 1. - c;
- double itheta = (theta != 0) ? 1./theta : 0.;
- Point3_<T> r = _rvec*itheta;
- Mat3 rrt( r.x*r.x, r.x*r.y, r.x*r.z, r.x*r.y, r.y*r.y, r.y*r.z, r.x*r.z, r.y*r.z, r.z*r.z );
- Mat3 r_x( 0, -r.z, r.y, r.z, 0, -r.x, -r.y, r.x, 0 );
- // R = cos(theta)*I + (1 - cos(theta))*r*rT + sin(theta)*[r_x]
- // where [r_x] is [0 -rz ry; rz 0 -rx; -ry rx 0]
- Mat3 R = c*Mat3::eye() + c1*rrt + s*r_x;
- rotation(R);
- }
- }
- //Combines rotation methods above. Supports 3x3, 1x3, 3x1 sizes of data matrix;
- template<typename T> inline
- void cv::Affine3<T>::rotation(const cv::Mat& data)
- {
- CV_Assert(data.type() == cv::traits::Type<T>::value);
- CV_Assert(data.channels() == 1);
- if (data.cols == 3 && data.rows == 3)
- {
- Mat3 R;
- data.copyTo(R);
- rotation(R);
- }
- else if ((data.cols == 3 && data.rows == 1) || (data.cols == 1 && data.rows == 3))
- {
- Vec3 _rvec;
- data.reshape(1, 3).copyTo(_rvec);
- rotation(_rvec);
- }
- else
- CV_Error(Error::StsError, "Input matrix can only be 3x3, 1x3 or 3x1");
- }
- template<typename T> inline
- void cv::Affine3<T>::linear(const Mat3& L)
- {
- matrix.val[0] = L.val[0]; matrix.val[1] = L.val[1]; matrix.val[ 2] = L.val[2];
- matrix.val[4] = L.val[3]; matrix.val[5] = L.val[4]; matrix.val[ 6] = L.val[5];
- matrix.val[8] = L.val[6]; matrix.val[9] = L.val[7]; matrix.val[10] = L.val[8];
- }
- template<typename T> inline
- void cv::Affine3<T>::translation(const Vec3& t)
- {
- matrix.val[3] = t[0]; matrix.val[7] = t[1]; matrix.val[11] = t[2];
- }
- template<typename T> inline
- typename cv::Affine3<T>::Mat3 cv::Affine3<T>::rotation() const
- {
- return linear();
- }
- template<typename T> inline
- typename cv::Affine3<T>::Mat3 cv::Affine3<T>::linear() const
- {
- typename cv::Affine3<T>::Mat3 R;
- R.val[0] = matrix.val[0]; R.val[1] = matrix.val[1]; R.val[2] = matrix.val[ 2];
- R.val[3] = matrix.val[4]; R.val[4] = matrix.val[5]; R.val[5] = matrix.val[ 6];
- R.val[6] = matrix.val[8]; R.val[7] = matrix.val[9]; R.val[8] = matrix.val[10];
- return R;
- }
- template<typename T> inline
- typename cv::Affine3<T>::Vec3 cv::Affine3<T>::translation() const
- {
- return Vec3(matrix.val[3], matrix.val[7], matrix.val[11]);
- }
- template<typename T> inline
- typename cv::Affine3<T>::Vec3 cv::Affine3<T>::rvec() const
- {
- cv::Vec3d w;
- cv::Matx33d u, vt, R = rotation();
- cv::SVD::compute(R, w, u, vt, cv::SVD::FULL_UV + cv::SVD::MODIFY_A);
- R = u * vt;
- double rx = R.val[7] - R.val[5];
- double ry = R.val[2] - R.val[6];
- double rz = R.val[3] - R.val[1];
- double s = std::sqrt((rx*rx + ry*ry + rz*rz)*0.25);
- double c = (R.val[0] + R.val[4] + R.val[8] - 1) * 0.5;
- c = c > 1.0 ? 1.0 : c < -1.0 ? -1.0 : c;
- double theta = acos(c);
- if( s < 1e-5 )
- {
- if( c > 0 )
- rx = ry = rz = 0;
- else
- {
- double t;
- t = (R.val[0] + 1) * 0.5;
- rx = std::sqrt(std::max(t, 0.0));
- t = (R.val[4] + 1) * 0.5;
- ry = std::sqrt(std::max(t, 0.0)) * (R.val[1] < 0 ? -1.0 : 1.0);
- t = (R.val[8] + 1) * 0.5;
- rz = std::sqrt(std::max(t, 0.0)) * (R.val[2] < 0 ? -1.0 : 1.0);
- if( fabs(rx) < fabs(ry) && fabs(rx) < fabs(rz) && (R.val[5] > 0) != (ry*rz > 0) )
- rz = -rz;
- theta /= std::sqrt(rx*rx + ry*ry + rz*rz);
- rx *= theta;
- ry *= theta;
- rz *= theta;
- }
- }
- else
- {
- double vth = 1/(2*s);
- vth *= theta;
- rx *= vth; ry *= vth; rz *= vth;
- }
- return cv::Vec3d(rx, ry, rz);
- }
- template<typename T> inline
- cv::Affine3<T> cv::Affine3<T>::inv(int method) const
- {
- return matrix.inv(method);
- }
- template<typename T> inline
- cv::Affine3<T> cv::Affine3<T>::rotate(const Mat3& R) const
- {
- Mat3 Lc = linear();
- Vec3 tc = translation();
- Mat4 result;
- result.val[12] = result.val[13] = result.val[14] = 0;
- result.val[15] = 1;
- for(int j = 0; j < 3; ++j)
- {
- for(int i = 0; i < 3; ++i)
- {
- float_type value = 0;
- for(int k = 0; k < 3; ++k)
- value += R(j, k) * Lc(k, i);
- result(j, i) = value;
- }
- result(j, 3) = R.row(j).dot(tc.t());
- }
- return result;
- }
- template<typename T> inline
- cv::Affine3<T> cv::Affine3<T>::rotate(const Vec3& _rvec) const
- {
- return rotate(Affine3f(_rvec).rotation());
- }
- template<typename T> inline
- cv::Affine3<T> cv::Affine3<T>::translate(const Vec3& t) const
- {
- Mat4 m = matrix;
- m.val[ 3] += t[0];
- m.val[ 7] += t[1];
- m.val[11] += t[2];
- return m;
- }
- template<typename T> inline
- cv::Affine3<T> cv::Affine3<T>::concatenate(const Affine3<T>& affine) const
- {
- return (*this).rotate(affine.rotation()).translate(affine.translation());
- }
- template<typename T> template <typename Y> inline
- cv::Affine3<T>::operator Affine3<Y>() const
- {
- return Affine3<Y>(matrix);
- }
- template<typename T> template <typename Y> inline
- cv::Affine3<Y> cv::Affine3<T>::cast() const
- {
- return Affine3<Y>(matrix);
- }
- template<typename T> inline
- cv::Affine3<T> cv::operator*(const cv::Affine3<T>& affine1, const cv::Affine3<T>& affine2)
- {
- return affine2.concatenate(affine1);
- }
- template<typename T, typename V> inline
- V cv::operator*(const cv::Affine3<T>& affine, const V& v)
- {
- const typename Affine3<T>::Mat4& m = affine.matrix;
- V r;
- r.x = m.val[0] * v.x + m.val[1] * v.y + m.val[ 2] * v.z + m.val[ 3];
- r.y = m.val[4] * v.x + m.val[5] * v.y + m.val[ 6] * v.z + m.val[ 7];
- r.z = m.val[8] * v.x + m.val[9] * v.y + m.val[10] * v.z + m.val[11];
- return r;
- }
- static inline
- cv::Vec3f cv::operator*(const cv::Affine3f& affine, const cv::Vec3f& v)
- {
- const cv::Matx44f& m = affine.matrix;
- cv::Vec3f r;
- r.val[0] = m.val[0] * v[0] + m.val[1] * v[1] + m.val[ 2] * v[2] + m.val[ 3];
- r.val[1] = m.val[4] * v[0] + m.val[5] * v[1] + m.val[ 6] * v[2] + m.val[ 7];
- r.val[2] = m.val[8] * v[0] + m.val[9] * v[1] + m.val[10] * v[2] + m.val[11];
- return r;
- }
- static inline
- cv::Vec3d cv::operator*(const cv::Affine3d& affine, const cv::Vec3d& v)
- {
- const cv::Matx44d& m = affine.matrix;
- cv::Vec3d r;
- r.val[0] = m.val[0] * v[0] + m.val[1] * v[1] + m.val[ 2] * v[2] + m.val[ 3];
- r.val[1] = m.val[4] * v[0] + m.val[5] * v[1] + m.val[ 6] * v[2] + m.val[ 7];
- r.val[2] = m.val[8] * v[0] + m.val[9] * v[1] + m.val[10] * v[2] + m.val[11];
- return r;
- }
- #if defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H
- template<typename T> inline
- cv::Affine3<T>::Affine3(const Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>& affine)
- {
- cv::Mat(4, 4, cv::traits::Type<T>::value, affine.matrix().data()).copyTo(matrix);
- }
- template<typename T> inline
- cv::Affine3<T>::Affine3(const Eigen::Transform<T, 3, Eigen::Affine>& affine)
- {
- Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)> a = affine;
- cv::Mat(4, 4, cv::traits::Type<T>::value, a.matrix().data()).copyTo(matrix);
- }
- template<typename T> inline
- cv::Affine3<T>::operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>() const
- {
- Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)> r;
- cv::Mat hdr(4, 4, cv::traits::Type<T>::value, r.matrix().data());
- cv::Mat(matrix, false).copyTo(hdr);
- return r;
- }
- template<typename T> inline
- cv::Affine3<T>::operator Eigen::Transform<T, 3, Eigen::Affine>() const
- {
- return this->operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>();
- }
- #endif /* defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H */
- //! @endcond
- #endif /* __cplusplus */
- #endif /* OPENCV_CORE_AFFINE3_HPP */
|