123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_CUDA_DEVICE_BLOCK_HPP
- #define OPENCV_CUDA_DEVICE_BLOCK_HPP
- /** @file
- * @deprecated Use @ref cudev instead.
- */
- //! @cond IGNORED
- namespace cv { namespace cuda { namespace device
- {
- struct Block
- {
- static __device__ __forceinline__ unsigned int id()
- {
- return blockIdx.x;
- }
- static __device__ __forceinline__ unsigned int stride()
- {
- return blockDim.x * blockDim.y * blockDim.z;
- }
- static __device__ __forceinline__ void sync()
- {
- __syncthreads();
- }
- static __device__ __forceinline__ int flattenedThreadId()
- {
- return threadIdx.z * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
- }
- template<typename It, typename T>
- static __device__ __forceinline__ void fill(It beg, It end, const T& value)
- {
- int STRIDE = stride();
- It t = beg + flattenedThreadId();
- for(; t < end; t += STRIDE)
- *t = value;
- }
- template<typename OutIt, typename T>
- static __device__ __forceinline__ void yota(OutIt beg, OutIt end, T value)
- {
- int STRIDE = stride();
- int tid = flattenedThreadId();
- value += tid;
- for(OutIt t = beg + tid; t < end; t += STRIDE, value += STRIDE)
- *t = value;
- }
- template<typename InIt, typename OutIt>
- static __device__ __forceinline__ void copy(InIt beg, InIt end, OutIt out)
- {
- int STRIDE = stride();
- InIt t = beg + flattenedThreadId();
- OutIt o = out + (t - beg);
- for(; t < end; t += STRIDE, o += STRIDE)
- *o = *t;
- }
- template<typename InIt, typename OutIt, class UnOp>
- static __device__ __forceinline__ void transform(InIt beg, InIt end, OutIt out, UnOp op)
- {
- int STRIDE = stride();
- InIt t = beg + flattenedThreadId();
- OutIt o = out + (t - beg);
- for(; t < end; t += STRIDE, o += STRIDE)
- *o = op(*t);
- }
- template<typename InIt1, typename InIt2, typename OutIt, class BinOp>
- static __device__ __forceinline__ void transform(InIt1 beg1, InIt1 end1, InIt2 beg2, OutIt out, BinOp op)
- {
- int STRIDE = stride();
- InIt1 t1 = beg1 + flattenedThreadId();
- InIt2 t2 = beg2 + flattenedThreadId();
- OutIt o = out + (t1 - beg1);
- for(; t1 < end1; t1 += STRIDE, t2 += STRIDE, o += STRIDE)
- *o = op(*t1, *t2);
- }
- template<int CTA_SIZE, typename T, class BinOp>
- static __device__ __forceinline__ void reduce(volatile T* buffer, BinOp op)
- {
- int tid = flattenedThreadId();
- T val = buffer[tid];
- if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
- if (CTA_SIZE >= 512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
- if (CTA_SIZE >= 256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
- if (CTA_SIZE >= 128) { if (tid < 64) buffer[tid] = val = op(val, buffer[tid + 64]); __syncthreads(); }
- if (tid < 32)
- {
- if (CTA_SIZE >= 64) { buffer[tid] = val = op(val, buffer[tid + 32]); }
- if (CTA_SIZE >= 32) { buffer[tid] = val = op(val, buffer[tid + 16]); }
- if (CTA_SIZE >= 16) { buffer[tid] = val = op(val, buffer[tid + 8]); }
- if (CTA_SIZE >= 8) { buffer[tid] = val = op(val, buffer[tid + 4]); }
- if (CTA_SIZE >= 4) { buffer[tid] = val = op(val, buffer[tid + 2]); }
- if (CTA_SIZE >= 2) { buffer[tid] = val = op(val, buffer[tid + 1]); }
- }
- }
- template<int CTA_SIZE, typename T, class BinOp>
- static __device__ __forceinline__ T reduce(volatile T* buffer, T init, BinOp op)
- {
- int tid = flattenedThreadId();
- T val = buffer[tid] = init;
- __syncthreads();
- if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
- if (CTA_SIZE >= 512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
- if (CTA_SIZE >= 256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
- if (CTA_SIZE >= 128) { if (tid < 64) buffer[tid] = val = op(val, buffer[tid + 64]); __syncthreads(); }
- if (tid < 32)
- {
- if (CTA_SIZE >= 64) { buffer[tid] = val = op(val, buffer[tid + 32]); }
- if (CTA_SIZE >= 32) { buffer[tid] = val = op(val, buffer[tid + 16]); }
- if (CTA_SIZE >= 16) { buffer[tid] = val = op(val, buffer[tid + 8]); }
- if (CTA_SIZE >= 8) { buffer[tid] = val = op(val, buffer[tid + 4]); }
- if (CTA_SIZE >= 4) { buffer[tid] = val = op(val, buffer[tid + 2]); }
- if (CTA_SIZE >= 2) { buffer[tid] = val = op(val, buffer[tid + 1]); }
- }
- __syncthreads();
- return buffer[0];
- }
- template <typename T, class BinOp>
- static __device__ __forceinline__ void reduce_n(T* data, unsigned int n, BinOp op)
- {
- int ftid = flattenedThreadId();
- int sft = stride();
- if (sft < n)
- {
- for (unsigned int i = sft + ftid; i < n; i += sft)
- data[ftid] = op(data[ftid], data[i]);
- __syncthreads();
- n = sft;
- }
- while (n > 1)
- {
- unsigned int half = n/2;
- if (ftid < half)
- data[ftid] = op(data[ftid], data[n - ftid - 1]);
- __syncthreads();
- n = n - half;
- }
- }
- };
- }}}
- //! @endcond
- #endif /* OPENCV_CUDA_DEVICE_BLOCK_HPP */
|