/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #ifndef OPENCV_FLANN_BASE_HPP_ #define OPENCV_FLANN_BASE_HPP_ #include #include #include #include "general.h" #include "matrix.h" #include "params.h" #include "saving.h" #include "all_indices.h" namespace cvflann { /** * Sets the log level used for all flann functions * @param level Verbosity level */ inline void log_verbosity(int level) { if (level >= 0) { Logger::setLevel(level); } } /** * (Deprecated) Index parameters for creating a saved index. */ struct SavedIndexParams : public IndexParams { SavedIndexParams(cv::String filename) { (* this)["algorithm"] = FLANN_INDEX_SAVED; (*this)["filename"] = filename; } }; template NNIndex* load_saved_index(const Matrix& dataset, const cv::String& filename, Distance distance) { typedef typename Distance::ElementType ElementType; FILE* fin = fopen(filename.c_str(), "rb"); if (fin == NULL) { return NULL; } IndexHeader header = load_header(fin); if (header.data_type != Datatype::type()) { fclose(fin); throw FLANNException("Datatype of saved index is different than of the one to be created."); } if ((size_t(header.rows) != dataset.rows)||(size_t(header.cols) != dataset.cols)) { fclose(fin); throw FLANNException("The index saved belongs to a different dataset"); } IndexParams params; params["algorithm"] = header.index_type; NNIndex* nnIndex = create_index_by_type(dataset, params, distance); nnIndex->loadIndex(fin); fclose(fin); return nnIndex; } template class Index : public NNIndex { public: typedef typename Distance::ElementType ElementType; typedef typename Distance::ResultType DistanceType; Index(const Matrix& features, const IndexParams& params, Distance distance = Distance() ) : index_params_(params) { flann_algorithm_t index_type = get_param(params,"algorithm"); loaded_ = false; if (index_type == FLANN_INDEX_SAVED) { nnIndex_ = load_saved_index(features, get_param(params,"filename"), distance); loaded_ = true; } else { nnIndex_ = create_index_by_type(features, params, distance); } } ~Index() { delete nnIndex_; } /** * Builds the index. */ void buildIndex() CV_OVERRIDE { if (!loaded_) { nnIndex_->buildIndex(); } } void save(cv::String filename) { FILE* fout = fopen(filename.c_str(), "wb"); if (fout == NULL) { throw FLANNException("Cannot open file"); } save_header(fout, *nnIndex_); saveIndex(fout); fclose(fout); } /** * \brief Saves the index to a stream * \param stream The stream to save the index to */ virtual void saveIndex(FILE* stream) CV_OVERRIDE { nnIndex_->saveIndex(stream); } /** * \brief Loads the index from a stream * \param stream The stream from which the index is loaded */ virtual void loadIndex(FILE* stream) CV_OVERRIDE { nnIndex_->loadIndex(stream); } /** * \returns number of features in this index. */ size_t veclen() const CV_OVERRIDE { return nnIndex_->veclen(); } /** * \returns The dimensionality of the features in this index. */ size_t size() const CV_OVERRIDE { return nnIndex_->size(); } /** * \returns The index type (kdtree, kmeans,...) */ flann_algorithm_t getType() const CV_OVERRIDE { return nnIndex_->getType(); } /** * \returns The amount of memory (in bytes) used by the index. */ virtual int usedMemory() const CV_OVERRIDE { return nnIndex_->usedMemory(); } /** * \returns The index parameters */ IndexParams getParameters() const CV_OVERRIDE { return nnIndex_->getParameters(); } /** * \brief Perform k-nearest neighbor search * \param[in] queries The query points for which to find the nearest neighbors * \param[out] indices The indices of the nearest neighbors found * \param[out] dists Distances to the nearest neighbors found * \param[in] knn Number of nearest neighbors to return * \param[in] params Search parameters */ void knnSearch(const Matrix& queries, Matrix& indices, Matrix& dists, int knn, const SearchParams& params) CV_OVERRIDE { nnIndex_->knnSearch(queries, indices, dists, knn, params); } /** * \brief Perform radius search * \param[in] query The query point * \param[out] indices The indinces of the neighbors found within the given radius * \param[out] dists The distances to the nearest neighbors found * \param[in] radius The radius used for search * \param[in] params Search parameters * \returns Number of neighbors found */ int radiusSearch(const Matrix& query, Matrix& indices, Matrix& dists, float radius, const SearchParams& params) CV_OVERRIDE { return nnIndex_->radiusSearch(query, indices, dists, radius, params); } /** * \brief Method that searches for nearest-neighbours */ void findNeighbors(ResultSet& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE { nnIndex_->findNeighbors(result, vec, searchParams); } /** * \brief Returns actual index */ CV_DEPRECATED NNIndex* getIndex() { return nnIndex_; } /** * \brief Returns index parameters. * \deprecated use getParameters() instead. */ CV_DEPRECATED const IndexParams* getIndexParameters() { return &index_params_; } private: /** Pointer to actual index class */ NNIndex* nnIndex_; /** Indices if the index was loaded from a file */ bool loaded_; /** Parameters passed to the index */ IndexParams index_params_; Index(const Index &); // copy disabled Index& operator=(const Index &); // assign disabled }; /** * Performs a hierarchical clustering of the points passed as argument and then takes a cut in the * the clustering tree to return a flat clustering. * @param[in] points Points to be clustered * @param centers The computed cluster centres. Matrix should be preallocated and centers.rows is the * number of clusters requested. * @param params Clustering parameters (The same as for cvflann::KMeansIndex) * @param d Distance to be used for clustering (eg: cvflann::L2) * @return number of clusters computed (can be different than clusters.rows and is the highest number * of the form (branching-1)*K+1 smaller than clusters.rows). */ template int hierarchicalClustering(const Matrix& points, Matrix& centers, const KMeansIndexParams& params, Distance d = Distance()) { KMeansIndex kmeans(points, params, d); kmeans.buildIndex(); int clusterNum = kmeans.getClusterCenters(centers); return clusterNum; } } #endif /* OPENCV_FLANN_BASE_HPP_ */