plots.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Plotting utils
  4. """
  5. import math
  6. import os
  7. from copy import copy
  8. from pathlib import Path
  9. from urllib.error import URLError
  10. import cv2
  11. import matplotlib
  12. import matplotlib.pyplot as plt
  13. import numpy as np
  14. import pandas as pd
  15. # import seaborn as sn
  16. import torch
  17. from PIL import Image, ImageDraw, ImageFont
  18. from dependence.yolov5.utils.general import (CONFIG_DIR, FONT, LOGGER, Timeout, check_font, check_requirements, clip_coords,
  19. increment_path, is_ascii, threaded, try_except, xywh2xyxy, xyxy2xywh)
  20. from dependence.yolov5.utils.metrics import fitness
  21. # Settings
  22. RANK = int(os.getenv('RANK', -1))
  23. matplotlib.rc('font', **{'size': 11})
  24. matplotlib.use('Agg') # for writing to files only
  25. class Colors:
  26. # Ultralytics color palette https://ultralytics.com/
  27. def __init__(self):
  28. # hex = matplotlib.colors.TABLEAU_COLORS.values()
  29. hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
  30. '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
  31. self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
  32. self.n = len(self.palette)
  33. def __call__(self, i, bgr=False):
  34. c = self.palette[int(i) % self.n]
  35. return (c[2], c[1], c[0]) if bgr else c
  36. @staticmethod
  37. def hex2rgb(h): # rgb order (PIL)
  38. return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
  39. colors = Colors() # create instance for 'from utils.plots import colors'
  40. def check_pil_font(font=FONT, size=10):
  41. # Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary
  42. font = Path(font)
  43. font = font if font.exists() else (CONFIG_DIR / font.name)
  44. try:
  45. return ImageFont.truetype(str(font) if font.exists() else font.name, size)
  46. except Exception: # download if missing
  47. try:
  48. check_font(font)
  49. return ImageFont.truetype(str(font), size)
  50. except TypeError:
  51. check_requirements('Pillow>=8.4.0') # known issue https://github.com/ultralytics/yolov5/issues/5374
  52. except URLError: # not online
  53. return ImageFont.load_default()
  54. class Annotator:
  55. # YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
  56. def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
  57. assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
  58. non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic
  59. self.pil = pil or non_ascii
  60. if self.pil: # use PIL
  61. self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
  62. self.draw = ImageDraw.Draw(self.im)
  63. self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font,
  64. size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
  65. else: # use cv2
  66. self.im = im
  67. self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width
  68. def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
  69. # Add one xyxy box to image with label
  70. if self.pil or not is_ascii(label):
  71. self.draw.rectangle(box, width=self.lw, outline=color) # box
  72. if label:
  73. w, h = self.font.getsize(label) # text width, height
  74. outside = box[1] - h >= 0 # label fits outside box
  75. self.draw.rectangle(
  76. (box[0], box[1] - h if outside else box[1], box[0] + w + 1,
  77. box[1] + 1 if outside else box[1] + h + 1),
  78. fill=color,
  79. )
  80. # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0
  81. self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
  82. else: # cv2
  83. p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
  84. cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
  85. if label:
  86. tf = max(self.lw - 1, 1) # font thickness
  87. w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height
  88. outside = p1[1] - h >= 3
  89. p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
  90. cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
  91. cv2.putText(self.im,
  92. label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
  93. 0,
  94. self.lw / 3,
  95. txt_color,
  96. thickness=tf,
  97. lineType=cv2.LINE_AA)
  98. def rectangle(self, xy, fill=None, outline=None, width=1):
  99. # Add rectangle to image (PIL-only)
  100. self.draw.rectangle(xy, fill, outline, width)
  101. def text(self, xy, text, txt_color=(255, 255, 255)):
  102. # Add text to image (PIL-only)
  103. w, h = self.font.getsize(text) # text width, height
  104. self.draw.text((xy[0], xy[1] - h + 1), text, fill=txt_color, font=self.font)
  105. def result(self):
  106. # Return annotated image as array
  107. return np.asarray(self.im)
  108. def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
  109. """
  110. x: Features to be visualized
  111. module_type: Module type
  112. stage: Module stage within save_models
  113. n: Maximum number of feature maps to plot
  114. save_dir: Directory to save results
  115. """
  116. if 'Detect' not in module_type:
  117. batch, channels, height, width = x.shape # batch, channels, height, width
  118. if height > 1 and width > 1:
  119. f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
  120. blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
  121. n = min(n, channels) # number of plots
  122. fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
  123. ax = ax.ravel()
  124. plt.subplots_adjust(wspace=0.05, hspace=0.05)
  125. for i in range(n):
  126. ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
  127. ax[i].axis('off')
  128. LOGGER.info(f'Saving {f}... ({n}/{channels})')
  129. plt.savefig(f, dpi=300, bbox_inches='tight')
  130. plt.close()
  131. np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save
  132. def hist2d(x, y, n=100):
  133. # 2d histogram used in labels.png and evolve.png
  134. xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
  135. hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
  136. xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
  137. yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
  138. return np.log(hist[xidx, yidx])
  139. def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
  140. from scipy.signal import butter, filtfilt
  141. # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
  142. def butter_lowpass(cutoff, fs, order):
  143. nyq = 0.5 * fs
  144. normal_cutoff = cutoff / nyq
  145. return butter(order, normal_cutoff, btype='low', analog=False)
  146. b, a = butter_lowpass(cutoff, fs, order=order)
  147. return filtfilt(b, a, data) # forward-backward filter
  148. def output_to_target(output):
  149. # Convert save_models output to target format [batch_id, class_id, x, y, w, h, conf]
  150. targets = []
  151. for i, o in enumerate(output):
  152. for *box, conf, cls in o.cpu().numpy():
  153. targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
  154. return np.array(targets)
  155. @threaded
  156. def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=1920, max_subplots=16):
  157. # Plot image grid with labels
  158. if isinstance(images, torch.Tensor):
  159. images = images.cpu().float().numpy()
  160. if isinstance(targets, torch.Tensor):
  161. targets = targets.cpu().numpy()
  162. if np.max(images[0]) <= 1:
  163. images *= 255 # de-normalise (optional)
  164. bs, _, h, w = images.shape # batch size, _, height, width
  165. bs = min(bs, max_subplots) # limit plot images
  166. ns = np.ceil(bs ** 0.5) # number of subplots (square)
  167. # Build Image
  168. mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
  169. for i, im in enumerate(images):
  170. if i == max_subplots: # if last batch has fewer images than we expect
  171. break
  172. x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
  173. im = im.transpose(1, 2, 0)
  174. mosaic[y:y + h, x:x + w, :] = im
  175. # Resize (optional)
  176. scale = max_size / ns / max(h, w)
  177. if scale < 1:
  178. h = math.ceil(scale * h)
  179. w = math.ceil(scale * w)
  180. mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
  181. # Annotate
  182. fs = int((h + w) * ns * 0.01) # font size
  183. annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
  184. for i in range(i + 1):
  185. x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
  186. annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
  187. if paths:
  188. annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
  189. if len(targets) > 0:
  190. ti = targets[targets[:, 0] == i] # image targets
  191. boxes = xywh2xyxy(ti[:, 2:6]).T
  192. classes = ti[:, 1].astype('int')
  193. labels = ti.shape[1] == 6 # labels if no conf column
  194. conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
  195. if boxes.shape[1]:
  196. if boxes.max() <= 1.01: # if normalized with tolerance 0.01
  197. boxes[[0, 2]] *= w # scale to pixels
  198. boxes[[1, 3]] *= h
  199. elif scale < 1: # absolute coords need scale if image scales
  200. boxes *= scale
  201. boxes[[0, 2]] += x
  202. boxes[[1, 3]] += y
  203. for j, box in enumerate(boxes.T.tolist()):
  204. cls = classes[j]
  205. color = colors(cls)
  206. cls = names[cls] if names else cls
  207. if labels or conf[j] > 0.25: # 0.25 conf thresh
  208. label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
  209. annotator.box_label(box, label, color=color)
  210. annotator.im.save(fname) # save
  211. def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
  212. # Plot LR simulating training for full epochs
  213. optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
  214. y = []
  215. for _ in range(epochs):
  216. scheduler.step()
  217. y.append(optimizer.param_groups[0]['lr'])
  218. plt.plot(y, '.-', label='LR')
  219. plt.xlabel('epoch')
  220. plt.ylabel('LR')
  221. plt.grid()
  222. plt.xlim(0, epochs)
  223. plt.ylim(0)
  224. plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
  225. plt.close()
  226. def plot_val_txt(): # from utils.plots import *; plot_val()
  227. # Plot val.txt histograms
  228. x = np.loadtxt('val.txt', dtype=np.float32)
  229. box = xyxy2xywh(x[:, :4])
  230. cx, cy = box[:, 0], box[:, 1]
  231. fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
  232. ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
  233. ax.set_aspect('equal')
  234. plt.savefig('hist2d.png', dpi=300)
  235. fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
  236. ax[0].hist(cx, bins=600)
  237. ax[1].hist(cy, bins=600)
  238. plt.savefig('hist1d.png', dpi=200)
  239. def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
  240. # Plot targets.txt histograms
  241. x = np.loadtxt('targets.txt', dtype=np.float32).T
  242. s = ['x targets', 'y targets', 'width targets', 'height targets']
  243. fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
  244. ax = ax.ravel()
  245. for i in range(4):
  246. ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}')
  247. ax[i].legend()
  248. ax[i].set_title(s[i])
  249. plt.savefig('targets.jpg', dpi=200)
  250. def plot_val_study(file='', dir='', x=None): # from utils.plots import *; plot_val_study()
  251. # Plot file=study.txt generated by val.py (or plot all study*.txt in dir)
  252. save_dir = Path(file).parent if file else Path(dir)
  253. plot2 = False # plot additional results
  254. if plot2:
  255. ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
  256. fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
  257. # for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
  258. for f in sorted(save_dir.glob('study*.txt')):
  259. y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
  260. x = np.arange(y.shape[1]) if x is None else np.array(x)
  261. if plot2:
  262. s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)']
  263. for i in range(7):
  264. ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
  265. ax[i].set_title(s[i])
  266. j = y[3].argmax() + 1
  267. ax2.plot(y[5, 1:j],
  268. y[3, 1:j] * 1E2,
  269. '.-',
  270. linewidth=2,
  271. markersize=8,
  272. label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
  273. ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
  274. 'k.-',
  275. linewidth=2,
  276. markersize=8,
  277. alpha=.25,
  278. label='EfficientDet')
  279. ax2.grid(alpha=0.2)
  280. ax2.set_yticks(np.arange(20, 60, 5))
  281. ax2.set_xlim(0, 57)
  282. ax2.set_ylim(25, 55)
  283. ax2.set_xlabel('GPU Speed (ms/img)')
  284. ax2.set_ylabel('COCO AP val')
  285. ax2.legend(loc='lower right')
  286. f = save_dir / 'study.png'
  287. print(f'Saving {f}...')
  288. plt.savefig(f, dpi=300)
  289. # @try_except # known issue https://github.com/ultralytics/yolov5/issues/5395
  290. # @Timeout(30) # known issue https://github.com/ultralytics/yolov5/issues/5611
  291. # def plot_labels(labels, names=(), save_dir=Path('')):
  292. # # plot dataset labels
  293. # LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
  294. # c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
  295. # nc = int(c.max() + 1) # number of classes
  296. # x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
  297. #
  298. # # seaborn correlogram
  299. # sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
  300. # plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
  301. # plt.close()
  302. #
  303. # # matplotlib labels
  304. # matplotlib.use('svg') # faster
  305. # ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
  306. # y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
  307. # try: # color histogram bars by class
  308. # [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195
  309. # except Exception:
  310. # pass
  311. # ax[0].set_ylabel('instances')
  312. # if 0 < len(names) < 30:
  313. # ax[0].set_xticks(range(len(names)))
  314. # ax[0].set_xticklabels(names, rotation=90, fontsize=10)
  315. # else:
  316. # ax[0].set_xlabel('classes')
  317. # sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
  318. # sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
  319. #
  320. # # rectangles
  321. # labels[:, 1:3] = 0.5 # center
  322. # labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
  323. # img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
  324. # for cls, *box in labels[:1000]:
  325. # ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
  326. # ax[1].imshow(img)
  327. # ax[1].axis('off')
  328. #
  329. # for a in [0, 1, 2, 3]:
  330. # for s in ['top', 'right', 'left', 'bottom']:
  331. # ax[a].spines[s].set_visible(False)
  332. #
  333. # plt.savefig(save_dir / 'labels.jpg', dpi=200)
  334. # matplotlib.use('Agg')
  335. # plt.close()
  336. def plot_evolve(evolve_csv='path/to/evolve.csv'): # from utils.plots import *; plot_evolve()
  337. # Plot evolve.csv hyp evolution results
  338. evolve_csv = Path(evolve_csv)
  339. data = pd.read_csv(evolve_csv)
  340. keys = [x.strip() for x in data.columns]
  341. x = data.values
  342. f = fitness(x)
  343. j = np.argmax(f) # max fitness index
  344. plt.figure(figsize=(10, 12), tight_layout=True)
  345. matplotlib.rc('font', **{'size': 8})
  346. print(f'Best results from row {j} of {evolve_csv}:')
  347. for i, k in enumerate(keys[7:]):
  348. v = x[:, 7 + i]
  349. mu = v[j] # best single result
  350. plt.subplot(6, 5, i + 1)
  351. plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
  352. plt.plot(mu, f.max(), 'k+', markersize=15)
  353. plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9}) # limit to 40 characters
  354. if i % 5 != 0:
  355. plt.yticks([])
  356. print(f'{k:>15}: {mu:.3g}')
  357. f = evolve_csv.with_suffix('.png') # filename
  358. plt.savefig(f, dpi=200)
  359. plt.close()
  360. print(f'Saved {f}')
  361. def plot_results(file='path/to/results.csv', dir=''):
  362. # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
  363. save_dir = Path(file).parent if file else Path(dir)
  364. fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
  365. ax = ax.ravel()
  366. files = list(save_dir.glob('results*.csv'))
  367. assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
  368. for f in files:
  369. try:
  370. data = pd.read_csv(f)
  371. s = [x.strip() for x in data.columns]
  372. x = data.values[:, 0]
  373. for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
  374. y = data.values[:, j].astype('float')
  375. # y[y == 0] = np.nan # don't show zero values
  376. ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
  377. ax[i].set_title(s[j], fontsize=12)
  378. # if j in [8, 9, 10]: # share train and val loss y axes
  379. # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
  380. except Exception as e:
  381. LOGGER.info(f'Warning: Plotting error for {f}: {e}')
  382. ax[1].legend()
  383. fig.savefig(save_dir / 'results.png', dpi=200)
  384. plt.close()
  385. def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
  386. # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
  387. ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
  388. s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
  389. files = list(Path(save_dir).glob('frames*.txt'))
  390. for fi, f in enumerate(files):
  391. try:
  392. results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
  393. n = results.shape[1] # number of rows
  394. x = np.arange(start, min(stop, n) if stop else n)
  395. results = results[:, x]
  396. t = (results[0] - results[0].min()) # set t0=0s
  397. results[0] = x
  398. for i, a in enumerate(ax):
  399. if i < len(results):
  400. label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
  401. a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
  402. a.set_title(s[i])
  403. a.set_xlabel('time (s)')
  404. # if fi == len(files) - 1:
  405. # a.set_ylim(bottom=0)
  406. for side in ['top', 'right']:
  407. a.spines[side].set_visible(False)
  408. else:
  409. a.remove()
  410. except Exception as e:
  411. print(f'Warning: Plotting error for {f}; {e}')
  412. ax[1].legend()
  413. plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
  414. def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
  415. # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
  416. xyxy = torch.tensor(xyxy).view(-1, 4)
  417. b = xyxy2xywh(xyxy) # boxes
  418. if square:
  419. b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
  420. b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
  421. xyxy = xywh2xyxy(b).long()
  422. clip_coords(xyxy, im.shape)
  423. crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
  424. if save:
  425. file.parent.mkdir(parents=True, exist_ok=True) # make directory
  426. f = str(increment_path(file).with_suffix('.jpg'))
  427. # cv2.imwrite(f, crop) # https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
  428. Image.fromarray(cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)).save(f, quality=95, subsampling=0)
  429. return crop