123456789101112131415161718192021222324252627282930313233343536373839 |
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- # Builds ultralytics/yolov5:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
- # Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv5 deployments
- # Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
- FROM ubuntu:20.04
- # Downloads to user config dir
- ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
- # Install linux packages
- RUN apt update
- RUN DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt install -y tzdata
- RUN apt install --no-install-recommends -y python3-pip git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3.8-dev
- # RUN alias python=python3
- # Install pip packages
- COPY requirements.txt .
- RUN python3 -m pip install --upgrade pip
- RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \
- coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu tensorflowjs \
- --extra-index-url https://download.pytorch.org/whl/cpu
- # Create working directory
- RUN mkdir -p /usr/src/app
- WORKDIR /usr/src/app
- # Copy contents
- COPY . /usr/src/app
- RUN git clone https://github.com/ultralytics/yolov5 /usr/src/yolov5
- # Usage Examples -------------------------------------------------------------------------------------------------------
- # Build and Push
- # t=ultralytics/yolov5:latest-cpu && sudo docker build -f utils/docker/Dockerfile-cpu -t $t . && sudo docker push $t
- # Pull and Run
- # t=ultralytics/yolov5:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t
|