123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Run YOLOv5 benchmarks on all supported export formats
- Format | `export.py --include` | Model
- --- | --- | ---
- PyTorch | - | yolov5s.pt
- TorchScript | `torchscript` | yolov5s.torchscript
- ONNX | `onnx` | yolov5s.onnx
- OpenVINO | `openvino` | yolov5s_openvino_model/
- TensorRT | `engine` | yolov5s.engine
- CoreML | `coreml` | yolov5s.mlmodel
- TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
- TensorFlow GraphDef | `pb` | yolov5s.pb
- TensorFlow Lite | `tflite` | yolov5s.tflite
- TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
- TensorFlow.js | `tfjs` | yolov5s_web_model/
- Requirements:
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
- $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
- Usage:
- $ python utils/benchmarks.py --weights yolov5s.pt --img 640
- """
- import argparse
- import sys
- import time
- from pathlib import Path
- import pandas as pd
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[1] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- # ROOT = ROOT.relative_to(Path.cwd()) # relative
- import export
- import val
- from utils import notebook_init
- from utils.general import LOGGER, check_yaml, print_args
- from utils.torch_utils import select_device
- def run(
- weights=ROOT / 'yolov5s.pt', # weights path
- imgsz=640, # inference size (pixels)
- batch_size=1, # batch size
- data=ROOT / 'data/coco128.yaml', # dataset.yaml path
- device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
- half=False, # use FP16 half-precision inference
- test=False, # test exports only
- pt_only=False, # test PyTorch only
- ):
- y, t = [], time.time()
- device = select_device(device)
- for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
- try:
- assert i != 9, 'Edge TPU not supported'
- assert i != 10, 'TF.js not supported'
- if device.type != 'cpu':
- assert gpu, f'{name} inference not supported on GPU'
- # Export
- if f == '-':
- w = weights # PyTorch format
- else:
- w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
- assert suffix in str(w), 'export failed'
- # Validate
- result = val.run(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half)
- metrics = result[0] # metrics (mp, mr, map50, map, *losses(box, obj, cls))
- speeds = result[2] # times (preprocess, inference, postprocess)
- y.append([name, round(metrics[3], 4), round(speeds[1], 2)]) # mAP, t_inference
- except Exception as e:
- LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}')
- y.append([name, None, None]) # mAP, t_inference
- if pt_only and i == 0:
- break # break after PyTorch
- # Print results
- LOGGER.info('\n')
- parse_opt()
- notebook_init() # print system info
- py = pd.DataFrame(y, columns=['Format', 'mAP@0.5:0.95', 'Inference time (ms)'] if map else ['Format', 'Export', ''])
- LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
- LOGGER.info(str(py if map else py.iloc[:, :2]))
- return py
- def test(
- weights=ROOT / 'yolov5s.pt', # weights path
- imgsz=640, # inference size (pixels)
- batch_size=1, # batch size
- data=ROOT / 'data/coco128.yaml', # dataset.yaml path
- device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
- half=False, # use FP16 half-precision inference
- test=False, # test exports only
- pt_only=False, # test PyTorch only
- ):
- y, t = [], time.time()
- device = select_device(device)
- for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
- try:
- w = weights if f == '-' else \
- export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights
- assert suffix in str(w), 'export failed'
- y.append([name, True])
- except Exception:
- y.append([name, False]) # mAP, t_inference
- # Print results
- LOGGER.info('\n')
- parse_opt()
- notebook_init() # print system info
- py = pd.DataFrame(y, columns=['Format', 'Export'])
- LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
- LOGGER.info(str(py))
- return py
- def parse_opt():
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
- parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
- parser.add_argument('--batch-size', type=int, default=1, help='batch size')
- parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
- parser.add_argument('--test', action='store_true', help='test exports only')
- parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
- opt = parser.parse_args()
- opt.data = check_yaml(opt.data) # check YAML
- print_args(vars(opt))
- return opt
- def main(opt):
- test(**vars(opt)) if opt.test else run(**vars(opt))
- if __name__ == "__main__":
- opt = parse_opt()
- main(opt)
|