123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- # DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
- # -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
- # Example usage: python train.py --data xView.yaml
- # parent
- # ├── yolov5
- # └── datasets
- # └── xView ← downloads here (20.7 GB)
- # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
- path: ../datasets/xView # dataset root dir
- train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
- val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
- # Classes
- nc: 60 # number of classes
- names: ['Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus',
- 'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer',
- 'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car',
- 'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge',
- 'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane',
- 'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck',
- 'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed',
- 'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad',
- 'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower'] # class names
- # Download script/URL (optional) ---------------------------------------------------------------------------------------
- download: |
- import json
- import os
- from pathlib import Path
- import numpy as np
- from PIL import Image
- from tqdm import tqdm
- from utils.datasets import autosplit
- from utils.general import download, xyxy2xywhn
- def convert_labels(fname=Path('xView/xView_train.geojson')):
- # Convert xView geoJSON labels to YOLO format
- path = fname.parent
- with open(fname) as f:
- print(f'Loading {fname}...')
- data = json.load(f)
- # Make dirs
- labels = Path(path / 'labels' / 'train')
- os.system(f'rm -rf {labels}')
- labels.mkdir(parents=True, exist_ok=True)
- # xView classes 11-94 to 0-59
- xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
- 12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
- 29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
- 47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
- shapes = {}
- for feature in tqdm(data['features'], desc=f'Converting {fname}'):
- p = feature['properties']
- if p['bounds_imcoords']:
- id = p['image_id']
- file = path / 'train_images' / id
- if file.exists(): # 1395.tif missing
- try:
- box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
- assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
- cls = p['type_id']
- cls = xview_class2index[int(cls)] # xView class to 0-60
- assert 59 >= cls >= 0, f'incorrect class index {cls}'
- # Write YOLO label
- if id not in shapes:
- shapes[id] = Image.open(file).size
- box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
- with open((labels / id).with_suffix('.txt'), 'a') as f:
- f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
- except Exception as e:
- print(f'WARNING: skipping one label for {file}: {e}')
- # Download manually from https://challenge.xviewdataset.org
- dir = Path(yaml['path']) # dataset root dir
- # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
- # 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
- # 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
- # download(urls, dir=dir, delete=False)
- # Convert labels
- convert_labels(dir / 'xView_train.geojson')
- # Move images
- images = Path(dir / 'images')
- images.mkdir(parents=True, exist_ok=True)
- Path(dir / 'train_images').rename(dir / 'images' / 'train')
- Path(dir / 'val_images').rename(dir / 'images' / 'val')
- # Split
- autosplit(dir / 'images' / 'train')
|