123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <string>
- #include <thread>
- #include <vector>
- #include "include/preprocess_op.h"
- namespace PaddleDetection {
- void InitInfo::Run(cv::Mat* im, ImageBlob* data) {
- data->im_shape_ = {static_cast<float>(im->rows),
- static_cast<float>(im->cols)};
- data->scale_factor_ = {1., 1.};
- data->in_net_shape_ = {static_cast<float>(im->rows),
- static_cast<float>(im->cols)};
- }
- void NormalizeImage::Run(cv::Mat* im, ImageBlob* data) {
- double e = 1.0;
- if (is_scale_) {
- e *= 1./255.0;
- }
- (*im).convertTo(*im, CV_32FC3, e);
- for (int h = 0; h < im->rows; h++) {
- for (int w = 0; w < im->cols; w++) {
- im->at<cv::Vec3f>(h, w)[0] =
- (im->at<cv::Vec3f>(h, w)[0] - mean_[0]) / scale_[0];
- im->at<cv::Vec3f>(h, w)[1] =
- (im->at<cv::Vec3f>(h, w)[1] - mean_[1]) / scale_[1];
- im->at<cv::Vec3f>(h, w)[2] =
- (im->at<cv::Vec3f>(h, w)[2] - mean_[2]) / scale_[2];
- }
- }
- }
- void Permute::Run(cv::Mat* im, ImageBlob* data) {
- (*im).convertTo(*im, CV_32FC3);
- int rh = im->rows;
- int rw = im->cols;
- int rc = im->channels();
- (data->im_data_).resize(rc * rh * rw);
- float* base = (data->im_data_).data();
- for (int i = 0; i < rc; ++i) {
- cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, base + i * rh * rw), i);
- }
- }
- void Resize::Run(cv::Mat* im, ImageBlob* data) {
- auto resize_scale = GenerateScale(*im);
- data->im_shape_ = {static_cast<float>(im->cols * resize_scale.first),
- static_cast<float>(im->rows * resize_scale.second)};
- data->in_net_shape_ = {static_cast<float>(im->cols * resize_scale.first),
- static_cast<float>(im->rows * resize_scale.second)};
- cv::resize(
- *im, *im, cv::Size(), resize_scale.first, resize_scale.second, interp_);
- data->im_shape_ = {
- static_cast<float>(im->rows), static_cast<float>(im->cols),
- };
- data->scale_factor_ = {
- resize_scale.second, resize_scale.first,
- };
- }
- std::pair<float, float> Resize::GenerateScale(const cv::Mat& im) {
- std::pair<float, float> resize_scale;
- int origin_w = im.cols;
- int origin_h = im.rows;
- if (keep_ratio_) {
- int im_size_max = std::max(origin_w, origin_h);
- int im_size_min = std::min(origin_w, origin_h);
- int target_size_max =
- *std::max_element(target_size_.begin(), target_size_.end());
- int target_size_min =
- *std::min_element(target_size_.begin(), target_size_.end());
- float scale_min =
- static_cast<float>(target_size_min) / static_cast<float>(im_size_min);
- float scale_max =
- static_cast<float>(target_size_max) / static_cast<float>(im_size_max);
- float scale_ratio = std::min(scale_min, scale_max);
- resize_scale = {scale_ratio, scale_ratio};
- } else {
- resize_scale.first =
- static_cast<float>(target_size_[1]) / static_cast<float>(origin_w);
- resize_scale.second =
- static_cast<float>(target_size_[0]) / static_cast<float>(origin_h);
- }
- return resize_scale;
- }
- void PadStride::Run(cv::Mat* im, ImageBlob* data) {
- if (stride_ <= 0) {
- return;
- }
- int rc = im->channels();
- int rh = im->rows;
- int rw = im->cols;
- int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_;
- int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_;
- cv::copyMakeBorder(
- *im, *im, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT, cv::Scalar(0));
- data->in_net_shape_ = {
- static_cast<float>(im->rows), static_cast<float>(im->cols),
- };
- }
- void TopDownEvalAffine::Run(cv::Mat* im, ImageBlob* data) {
- cv::resize(*im, *im, cv::Size(trainsize_[0], trainsize_[1]), 0, 0, interp_);
- // todo: Simd::ResizeBilinear();
- data->in_net_shape_ = {
- static_cast<float>(trainsize_[1]), static_cast<float>(trainsize_[0]),
- };
- }
- // Preprocessor op running order
- const std::vector<std::string> Preprocessor::RUN_ORDER = {"InitInfo",
- "TopDownEvalAffine",
- "Resize",
- "NormalizeImage",
- "PadStride",
- "Permute"};
- void Preprocessor::Run(cv::Mat* im, ImageBlob* data) {
- for (const auto& name : RUN_ORDER) {
- if (ops_.find(name) != ops_.end()) {
- ops_[name]->Run(im, data);
- }
- }
- }
- void CropImg(cv::Mat& img,
- cv::Mat& crop_img,
- std::vector<int>& area,
- std::vector<float>& center,
- std::vector<float>& scale,
- float expandratio) {
- int crop_x1 = std::max(0, area[0]);
- int crop_y1 = std::max(0, area[1]);
- int crop_x2 = std::min(img.cols - 1, area[2]);
- int crop_y2 = std::min(img.rows - 1, area[3]);
-
- int center_x = (crop_x1 + crop_x2) / 2.;
- int center_y = (crop_y1 + crop_y2) / 2.;
- int half_h = (crop_y2 - crop_y1) / 2.;
- int half_w = (crop_x2 - crop_x1) / 2.;
- if (half_h * 3 > half_w * 4) {
- half_w = static_cast<int>(half_h * 0.75);
- } else {
- half_h = static_cast<int>(half_w * 4 / 3);
- }
- crop_x1 =
- std::max(0, center_x - static_cast<int>(half_w * (1 + expandratio)));
- crop_y1 =
- std::max(0, center_y - static_cast<int>(half_h * (1 + expandratio)));
- crop_x2 = std::min(img.cols - 1,
- static_cast<int>(center_x + half_w * (1 + expandratio)));
- crop_y2 = std::min(img.rows - 1,
- static_cast<int>(center_y + half_h * (1 + expandratio)));
- crop_img =
- img(cv::Range(crop_y1, crop_y2 + 1), cv::Range(crop_x1, crop_x2 + 1));
- center.clear();
- center.emplace_back((crop_x1 + crop_x2) / 2);
- center.emplace_back((crop_y1 + crop_y2) / 2);
- scale.clear();
- scale.emplace_back((crop_x2 - crop_x1));
- scale.emplace_back((crop_y2 - crop_y1));
- }
- } // namespace PaddleDetection
|