MaochengHu 576cda45b8 first commit 2 gadi atpakaļ
..
_base_ 576cda45b8 first commit 2 gadi atpakaļ
application 576cda45b8 first commit 2 gadi atpakaļ
more_config 576cda45b8 first commit 2 gadi atpakaļ
pruner 576cda45b8 first commit 2 gadi atpakaļ
README.md 576cda45b8 first commit 2 gadi atpakaļ
picodet_l_320_coco.yml 576cda45b8 first commit 2 gadi atpakaļ
picodet_l_416_coco.yml 576cda45b8 first commit 2 gadi atpakaļ
picodet_l_640_coco.yml 576cda45b8 first commit 2 gadi atpakaļ
picodet_m_320_coco.yml 576cda45b8 first commit 2 gadi atpakaļ
picodet_m_416_coco.yml 576cda45b8 first commit 2 gadi atpakaļ
picodet_s_320_coco.yml 576cda45b8 first commit 2 gadi atpakaļ
picodet_s_320_voc.yml 576cda45b8 first commit 2 gadi atpakaļ
picodet_s_416_coco.yml 576cda45b8 first commit 2 gadi atpakaļ

README.md

PP-PicoDet Legacy Model-ZOO (2021.10)

More Configs

Model Input size mAPval
0.5:0.95
mAPval
0.5
Params
(M)
FLOPS
(G)
LatencyNCNN
(ms)
LatencyLite
(ms)
Download Config
PicoDet-S 320*320 27.1 41.4 0.99 0.73 8.13 6.65 model | log config
PicoDet-S 416*416 30.7 45.8 0.99 1.24 12.37 9.82 model | log config
PicoDet-M 320*320 30.9 45.7 2.15 1.48 11.27 9.61 model | log config
PicoDet-M 416*416 34.8 50.5 2.15 2.50 17.39 15.88 model | log config
PicoDet-L 320*320 32.9 48.2 3.30 2.23 15.26 13.42 model | log config
PicoDet-L 416*416 36.6 52.5 3.30 3.76 23.36 21.85 model | log config
PicoDet-L 640*640 40.9 57.6 3.30 8.91 54.11 50.55 model | log config

Table Notes:
  • Latency: All our models test on Qualcomm Snapdragon 865(4xA77+4xA55) with 4 threads by arm8 and with FP16. In the above table, test latency on NCNN and Lite->Paddle-Lite. And testing latency with code: MobileDetBenchmark.
  • PicoDet is trained on COCO train2017 dataset and evaluated on COCO val2017.
  • PicoDet used 4 or 8 GPUs for training and all checkpoints are trained with default settings and hyperparameters.

  • Deploy models
Model Input size mAPval
0.5:0.95
mAPval
0.5
Params
(M)
FLOPS
(G)
LatencyNCNN
(ms)
LatencyLite
(ms)
Download Config
PicoDet-Shufflenetv2 1x 416*416 30.0 44.6 1.17 1.53 15.06 10.63 model | log config
PicoDet-MobileNetv3-large 1x 416*416 35.6 52.0 3.55 2.80 20.71 17.88 model | log config
PicoDet-LCNet 1.5x 416*416 36.3 52.2 3.10 3.85 21.29 20.8 model | log config
PicoDet-LCNet 1.5x 640*640 40.6 57.4 3.10 - - - model | log config
PicoDet-R18 640*640 40.7 57.2 11.10 - - - model | log config
Model Input size ONNX Paddle Lite(fp32) Paddle Lite(fp16)
PicoDet-S 320*320 model model model
PicoDet-S 416*416 model model model
PicoDet-M 320*320 model model model
PicoDet-M 416*416 model model model
PicoDet-L 320*320 model model model
PicoDet-L 416*416 model model model
PicoDet-L 640*640 model model model
PicoDet-Shufflenetv2 1x 416*416 model model model
PicoDet-MobileNetv3-large 1x 416*416 model model model
PicoDet-LCNet 1.5x 416*416 model model model

Cite PP-PicoDet

@misc{yu2021pppicodet,
      title={PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices},
      author={Guanghua Yu and Qinyao Chang and Wenyu Lv and Chang Xu and Cheng Cui and Wei Ji and Qingqing Dang and Kaipeng Deng and Guanzhong Wang and Yuning Du and Baohua Lai and Qiwen Liu and Xiaoguang Hu and Dianhai Yu and Yanjun Ma},
      year={2021},
      eprint={2111.00902},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}