123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import print_function
- import os, sys
- # add python path of PadleDetection to sys.path
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4)))
- if parent_path not in sys.path:
- sys.path.append(parent_path)
- import unittest
- import numpy as np
- import paddle
- import paddle.fluid as fluid
- from paddle.fluid.dygraph import base
- import ppdet.modeling.ops as ops
- from ppdet.modeling.tests.test_base import LayerTest
- def make_rois(h, w, rois_num, output_size):
- rois = np.zeros((0, 4)).astype('float32')
- for roi_num in rois_num:
- roi = np.zeros((roi_num, 4)).astype('float32')
- roi[:, 0] = np.random.randint(0, h - output_size[0], size=roi_num)
- roi[:, 1] = np.random.randint(0, w - output_size[1], size=roi_num)
- roi[:, 2] = np.random.randint(roi[:, 0] + output_size[0], h)
- roi[:, 3] = np.random.randint(roi[:, 1] + output_size[1], w)
- rois = np.vstack((rois, roi))
- return rois
- def softmax(x):
- # clip to shiftx, otherwise, when calc loss with
- # log(exp(shiftx)), may get log(0)=INF
- shiftx = (x - np.max(x)).clip(-64.)
- exps = np.exp(shiftx)
- return exps / np.sum(exps)
- class TestDistributeFpnProposals(LayerTest):
- def test_distribute_fpn_proposals(self):
- rois_np = np.random.rand(10, 4).astype('float32')
- rois_num_np = np.array([4, 6]).astype('int32')
- with self.static_graph():
- rois = paddle.static.data(
- name='rois', shape=[10, 4], dtype='float32')
- rois_num = paddle.static.data(
- name='rois_num', shape=[None], dtype='int32')
- multi_rois, restore_ind, rois_num_per_level = ops.distribute_fpn_proposals(
- fpn_rois=rois,
- min_level=2,
- max_level=5,
- refer_level=4,
- refer_scale=224,
- rois_num=rois_num)
- fetch_list = multi_rois + [restore_ind] + rois_num_per_level
- output_stat = self.get_static_graph_result(
- feed={'rois': rois_np,
- 'rois_num': rois_num_np},
- fetch_list=fetch_list,
- with_lod=True)
- output_stat_np = []
- for output in output_stat:
- output_np = np.array(output)
- if len(output_np) > 0:
- output_stat_np.append(output_np)
- with self.dynamic_graph():
- rois_dy = base.to_variable(rois_np)
- rois_num_dy = base.to_variable(rois_num_np)
- multi_rois_dy, restore_ind_dy, rois_num_per_level_dy = ops.distribute_fpn_proposals(
- fpn_rois=rois_dy,
- min_level=2,
- max_level=5,
- refer_level=4,
- refer_scale=224,
- rois_num=rois_num_dy)
- output_dy = multi_rois_dy + [restore_ind_dy] + rois_num_per_level_dy
- output_dy_np = []
- for output in output_dy:
- output_np = output.numpy()
- if len(output_np) > 0:
- output_dy_np.append(output_np)
- for res_stat, res_dy in zip(output_stat_np, output_dy_np):
- self.assertTrue(np.array_equal(res_stat, res_dy))
- def test_distribute_fpn_proposals_error(self):
- with self.static_graph():
- fpn_rois = paddle.static.data(
- name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
- self.assertRaises(
- TypeError,
- ops.distribute_fpn_proposals,
- fpn_rois=fpn_rois,
- min_level=2,
- max_level=5,
- refer_level=4,
- refer_scale=224)
- paddle.disable_static()
- class TestROIAlign(LayerTest):
- def test_roi_align(self):
- b, c, h, w = 2, 12, 20, 20
- inputs_np = np.random.rand(b, c, h, w).astype('float32')
- rois_num = [4, 6]
- output_size = (7, 7)
- rois_np = make_rois(h, w, rois_num, output_size)
- rois_num_np = np.array(rois_num).astype('int32')
- with self.static_graph():
- inputs = paddle.static.data(
- name='inputs', shape=[b, c, h, w], dtype='float32')
- rois = paddle.static.data(
- name='rois', shape=[10, 4], dtype='float32')
- rois_num = paddle.static.data(
- name='rois_num', shape=[None], dtype='int32')
- output = paddle.vision.ops.roi_align(
- x=inputs,
- boxes=rois,
- boxes_num=rois_num,
- output_size=output_size)
- output_np, = self.get_static_graph_result(
- feed={
- 'inputs': inputs_np,
- 'rois': rois_np,
- 'rois_num': rois_num_np
- },
- fetch_list=output,
- with_lod=False)
- with self.dynamic_graph():
- inputs_dy = base.to_variable(inputs_np)
- rois_dy = base.to_variable(rois_np)
- rois_num_dy = base.to_variable(rois_num_np)
- output_dy = paddle.vision.ops.roi_align(
- x=inputs_dy,
- boxes=rois_dy,
- boxes_num=rois_num_dy,
- output_size=output_size)
- output_dy_np = output_dy.numpy()
- self.assertTrue(np.array_equal(output_np, output_dy_np))
- def test_roi_align_error(self):
- with self.static_graph():
- inputs = paddle.static.data(
- name='inputs', shape=[2, 12, 20, 20], dtype='float32')
- rois = paddle.static.data(
- name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
- self.assertRaises(
- TypeError,
- paddle.vision.ops.roi_align,
- input=inputs,
- rois=rois,
- output_size=(7, 7))
- paddle.disable_static()
- class TestROIPool(LayerTest):
- def test_roi_pool(self):
- b, c, h, w = 2, 12, 20, 20
- inputs_np = np.random.rand(b, c, h, w).astype('float32')
- rois_num = [4, 6]
- output_size = (7, 7)
- rois_np = make_rois(h, w, rois_num, output_size)
- rois_num_np = np.array(rois_num).astype('int32')
- with self.static_graph():
- inputs = paddle.static.data(
- name='inputs', shape=[b, c, h, w], dtype='float32')
- rois = paddle.static.data(
- name='rois', shape=[10, 4], dtype='float32')
- rois_num = paddle.static.data(
- name='rois_num', shape=[None], dtype='int32')
- output = paddle.vision.ops.roi_pool(
- x=inputs,
- boxes=rois,
- boxes_num=rois_num,
- output_size=output_size)
- output_np, = self.get_static_graph_result(
- feed={
- 'inputs': inputs_np,
- 'rois': rois_np,
- 'rois_num': rois_num_np
- },
- fetch_list=[output],
- with_lod=False)
- with self.dynamic_graph():
- inputs_dy = base.to_variable(inputs_np)
- rois_dy = base.to_variable(rois_np)
- rois_num_dy = base.to_variable(rois_num_np)
- output_dy = paddle.vision.ops.roi_pool(
- x=inputs_dy,
- boxes=rois_dy,
- boxes_num=rois_num_dy,
- output_size=output_size)
- output_dy_np = output_dy.numpy()
- self.assertTrue(np.array_equal(output_np, output_dy_np))
- def test_roi_pool_error(self):
- with self.static_graph():
- inputs = paddle.static.data(
- name='inputs', shape=[2, 12, 20, 20], dtype='float32')
- rois = paddle.static.data(
- name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
- self.assertRaises(
- TypeError,
- paddle.vision.ops.roi_pool,
- input=inputs,
- rois=rois,
- output_size=(7, 7))
- paddle.disable_static()
- class TestIoUSimilarity(LayerTest):
- def test_iou_similarity(self):
- b, c, h, w = 2, 12, 20, 20
- inputs_np = np.random.rand(b, c, h, w).astype('float32')
- output_size = (7, 7)
- x_np = make_rois(h, w, [20], output_size)
- y_np = make_rois(h, w, [10], output_size)
- with self.static_graph():
- x = paddle.static.data(name='x', shape=[20, 4], dtype='float32')
- y = paddle.static.data(name='y', shape=[10, 4], dtype='float32')
- iou = ops.iou_similarity(x=x, y=y)
- iou_np, = self.get_static_graph_result(
- feed={
- 'x': x_np,
- 'y': y_np,
- }, fetch_list=[iou], with_lod=False)
- with self.dynamic_graph():
- x_dy = base.to_variable(x_np)
- y_dy = base.to_variable(y_np)
- iou_dy = ops.iou_similarity(x=x_dy, y=y_dy)
- iou_dy_np = iou_dy.numpy()
- self.assertTrue(np.array_equal(iou_np, iou_dy_np))
- class TestYoloBox(LayerTest):
- def test_yolo_box(self):
- # x shape [N C H W], C=K * (5 + class_num), class_num=10, K=2
- np_x = np.random.random([1, 30, 7, 7]).astype('float32')
- np_origin_shape = np.array([[608, 608]], dtype='int32')
- class_num = 10
- conf_thresh = 0.01
- downsample_ratio = 32
- scale_x_y = 1.2
- # static
- with self.static_graph():
- # x shape [N C H W], C=K * (5 + class_num), class_num=10, K=2
- x = paddle.static.data(
- name='x', shape=[1, 30, 7, 7], dtype='float32')
- origin_shape = paddle.static.data(
- name='origin_shape', shape=[1, 2], dtype='int32')
- boxes, scores = ops.yolo_box(
- x,
- origin_shape, [10, 13, 30, 13],
- class_num,
- conf_thresh,
- downsample_ratio,
- scale_x_y=scale_x_y)
- boxes_np, scores_np = self.get_static_graph_result(
- feed={
- 'x': np_x,
- 'origin_shape': np_origin_shape,
- },
- fetch_list=[boxes, scores],
- with_lod=False)
- # dygraph
- with self.dynamic_graph():
- x_dy = fluid.layers.assign(np_x)
- origin_shape_dy = fluid.layers.assign(np_origin_shape)
- boxes_dy, scores_dy = ops.yolo_box(
- x_dy,
- origin_shape_dy, [10, 13, 30, 13],
- 10,
- 0.01,
- 32,
- scale_x_y=scale_x_y)
- boxes_dy_np = boxes_dy.numpy()
- scores_dy_np = scores_dy.numpy()
- self.assertTrue(np.array_equal(boxes_np, boxes_dy_np))
- self.assertTrue(np.array_equal(scores_np, scores_dy_np))
- def test_yolo_box_error(self):
- with self.static_graph():
- # x shape [N C H W], C=K * (5 + class_num), class_num=10, K=2
- x = paddle.static.data(
- name='x', shape=[1, 30, 7, 7], dtype='float32')
- origin_shape = paddle.static.data(
- name='origin_shape', shape=[1, 2], dtype='int32')
- self.assertRaises(
- TypeError,
- ops.yolo_box,
- x,
- origin_shape, [10, 13, 30, 13],
- 10.123,
- 0.01,
- 32,
- scale_x_y=1.2)
- paddle.disable_static()
- class TestPriorBox(LayerTest):
- def test_prior_box(self):
- input_np = np.random.rand(2, 10, 32, 32).astype('float32')
- image_np = np.random.rand(2, 10, 40, 40).astype('float32')
- min_sizes = [2, 4]
- with self.static_graph():
- input = paddle.static.data(
- name='input', shape=[2, 10, 32, 32], dtype='float32')
- image = paddle.static.data(
- name='image', shape=[2, 10, 40, 40], dtype='float32')
- box, var = ops.prior_box(
- input=input,
- image=image,
- min_sizes=min_sizes,
- clip=True,
- flip=True)
- box_np, var_np = self.get_static_graph_result(
- feed={
- 'input': input_np,
- 'image': image_np,
- },
- fetch_list=[box, var],
- with_lod=False)
- with self.dynamic_graph():
- inputs_dy = base.to_variable(input_np)
- image_dy = base.to_variable(image_np)
- box_dy, var_dy = ops.prior_box(
- input=inputs_dy,
- image=image_dy,
- min_sizes=min_sizes,
- clip=True,
- flip=True)
- box_dy_np = box_dy.numpy()
- var_dy_np = var_dy.numpy()
- self.assertTrue(np.array_equal(box_np, box_dy_np))
- self.assertTrue(np.array_equal(var_np, var_dy_np))
- def test_prior_box_error(self):
- with self.static_graph():
- input = paddle.static.data(
- name='input', shape=[2, 10, 32, 32], dtype='int32')
- image = paddle.static.data(
- name='image', shape=[2, 10, 40, 40], dtype='int32')
- self.assertRaises(
- TypeError,
- ops.prior_box,
- input=input,
- image=image,
- min_sizes=[2, 4],
- clip=True,
- flip=True)
- paddle.disable_static()
- class TestMulticlassNms(LayerTest):
- def test_multiclass_nms(self):
- boxes_np = np.random.rand(10, 81, 4).astype('float32')
- scores_np = np.random.rand(10, 81).astype('float32')
- rois_num_np = np.array([2, 8]).astype('int32')
- with self.static_graph():
- boxes = paddle.static.data(
- name='bboxes',
- shape=[None, 81, 4],
- dtype='float32',
- lod_level=1)
- scores = paddle.static.data(
- name='scores', shape=[None, 81], dtype='float32', lod_level=1)
- rois_num = paddle.static.data(
- name='rois_num', shape=[None], dtype='int32')
- output = ops.multiclass_nms(
- bboxes=boxes,
- scores=scores,
- background_label=0,
- score_threshold=0.5,
- nms_top_k=400,
- nms_threshold=0.3,
- keep_top_k=200,
- normalized=False,
- return_index=True,
- rois_num=rois_num)
- out_np, index_np, nms_rois_num_np = self.get_static_graph_result(
- feed={
- 'bboxes': boxes_np,
- 'scores': scores_np,
- 'rois_num': rois_num_np
- },
- fetch_list=output,
- with_lod=True)
- out_np = np.array(out_np)
- index_np = np.array(index_np)
- nms_rois_num_np = np.array(nms_rois_num_np)
- with self.dynamic_graph():
- boxes_dy = base.to_variable(boxes_np)
- scores_dy = base.to_variable(scores_np)
- rois_num_dy = base.to_variable(rois_num_np)
- out_dy, index_dy, nms_rois_num_dy = ops.multiclass_nms(
- bboxes=boxes_dy,
- scores=scores_dy,
- background_label=0,
- score_threshold=0.5,
- nms_top_k=400,
- nms_threshold=0.3,
- keep_top_k=200,
- normalized=False,
- return_index=True,
- rois_num=rois_num_dy)
- out_dy_np = out_dy.numpy()
- index_dy_np = index_dy.numpy()
- nms_rois_num_dy_np = nms_rois_num_dy.numpy()
- self.assertTrue(np.array_equal(out_np, out_dy_np))
- self.assertTrue(np.array_equal(index_np, index_dy_np))
- self.assertTrue(np.array_equal(nms_rois_num_np, nms_rois_num_dy_np))
- def test_multiclass_nms_error(self):
- with self.static_graph():
- boxes = paddle.static.data(
- name='bboxes', shape=[81, 4], dtype='float32', lod_level=1)
- scores = paddle.static.data(
- name='scores', shape=[81], dtype='float32', lod_level=1)
- rois_num = paddle.static.data(
- name='rois_num', shape=[40, 41], dtype='int32')
- self.assertRaises(
- TypeError,
- ops.multiclass_nms,
- boxes=boxes,
- scores=scores,
- background_label=0,
- score_threshold=0.5,
- nms_top_k=400,
- nms_threshold=0.3,
- keep_top_k=200,
- normalized=False,
- return_index=True,
- rois_num=rois_num)
- class TestMatrixNMS(LayerTest):
- def test_matrix_nms(self):
- N, M, C = 7, 1200, 21
- BOX_SIZE = 4
- nms_top_k = 400
- keep_top_k = 200
- score_threshold = 0.01
- post_threshold = 0.
- scores_np = np.random.random((N * M, C)).astype('float32')
- scores_np = np.apply_along_axis(softmax, 1, scores_np)
- scores_np = np.reshape(scores_np, (N, M, C))
- scores_np = np.transpose(scores_np, (0, 2, 1))
- boxes_np = np.random.random((N, M, BOX_SIZE)).astype('float32')
- boxes_np[:, :, 0:2] = boxes_np[:, :, 0:2] * 0.5
- boxes_np[:, :, 2:4] = boxes_np[:, :, 2:4] * 0.5 + 0.5
- with self.static_graph():
- boxes = paddle.static.data(
- name='boxes', shape=[N, M, BOX_SIZE], dtype='float32')
- scores = paddle.static.data(
- name='scores', shape=[N, C, M], dtype='float32')
- out, index, _ = ops.matrix_nms(
- bboxes=boxes,
- scores=scores,
- score_threshold=score_threshold,
- post_threshold=post_threshold,
- nms_top_k=nms_top_k,
- keep_top_k=keep_top_k,
- return_index=True)
- out_np, index_np = self.get_static_graph_result(
- feed={'boxes': boxes_np,
- 'scores': scores_np},
- fetch_list=[out, index],
- with_lod=True)
- with self.dynamic_graph():
- boxes_dy = base.to_variable(boxes_np)
- scores_dy = base.to_variable(scores_np)
- out_dy, index_dy, _ = ops.matrix_nms(
- bboxes=boxes_dy,
- scores=scores_dy,
- score_threshold=score_threshold,
- post_threshold=post_threshold,
- nms_top_k=nms_top_k,
- keep_top_k=keep_top_k,
- return_index=True)
- out_dy_np = out_dy.numpy()
- index_dy_np = index_dy.numpy()
- self.assertTrue(np.array_equal(out_np, out_dy_np))
- self.assertTrue(np.array_equal(index_np, index_dy_np))
- def test_matrix_nms_error(self):
- with self.static_graph():
- bboxes = paddle.static.data(
- name='bboxes', shape=[7, 1200, 4], dtype='float32')
- scores = paddle.static.data(
- name='data_error', shape=[7, 21, 1200], dtype='int32')
- self.assertRaises(
- TypeError,
- ops.matrix_nms,
- bboxes=bboxes,
- scores=scores,
- score_threshold=0.01,
- post_threshold=0.,
- nms_top_k=400,
- keep_top_k=200,
- return_index=True)
- paddle.disable_static()
- class TestBoxCoder(LayerTest):
- def test_box_coder(self):
- prior_box_np = np.random.random((81, 4)).astype('float32')
- prior_box_var_np = np.random.random((81, 4)).astype('float32')
- target_box_np = np.random.random((20, 81, 4)).astype('float32')
- # static
- with self.static_graph():
- prior_box = paddle.static.data(
- name='prior_box', shape=[81, 4], dtype='float32')
- prior_box_var = paddle.static.data(
- name='prior_box_var', shape=[81, 4], dtype='float32')
- target_box = paddle.static.data(
- name='target_box', shape=[20, 81, 4], dtype='float32')
- boxes = ops.box_coder(
- prior_box=prior_box,
- prior_box_var=prior_box_var,
- target_box=target_box,
- code_type="decode_center_size",
- box_normalized=False)
- boxes_np, = self.get_static_graph_result(
- feed={
- 'prior_box': prior_box_np,
- 'prior_box_var': prior_box_var_np,
- 'target_box': target_box_np,
- },
- fetch_list=[boxes],
- with_lod=False)
- # dygraph
- with self.dynamic_graph():
- prior_box_dy = base.to_variable(prior_box_np)
- prior_box_var_dy = base.to_variable(prior_box_var_np)
- target_box_dy = base.to_variable(target_box_np)
- boxes_dy = ops.box_coder(
- prior_box=prior_box_dy,
- prior_box_var=prior_box_var_dy,
- target_box=target_box_dy,
- code_type="decode_center_size",
- box_normalized=False)
- boxes_dy_np = boxes_dy.numpy()
- self.assertTrue(np.array_equal(boxes_np, boxes_dy_np))
- def test_box_coder_error(self):
- with self.static_graph():
- prior_box = paddle.static.data(
- name='prior_box', shape=[81, 4], dtype='int32')
- prior_box_var = paddle.static.data(
- name='prior_box_var', shape=[81, 4], dtype='float32')
- target_box = paddle.static.data(
- name='target_box', shape=[20, 81, 4], dtype='float32')
- self.assertRaises(TypeError, ops.box_coder, prior_box,
- prior_box_var, target_box)
- paddle.disable_static()
- class TestGenerateProposals(LayerTest):
- def test_generate_proposals(self):
- scores_np = np.random.rand(2, 3, 4, 4).astype('float32')
- bbox_deltas_np = np.random.rand(2, 12, 4, 4).astype('float32')
- im_shape_np = np.array([[8, 8], [6, 6]]).astype('float32')
- anchors_np = np.reshape(np.arange(4 * 4 * 3 * 4),
- [4, 4, 3, 4]).astype('float32')
- variances_np = np.ones((4, 4, 3, 4)).astype('float32')
- with self.static_graph():
- scores = paddle.static.data(
- name='scores', shape=[2, 3, 4, 4], dtype='float32')
- bbox_deltas = paddle.static.data(
- name='bbox_deltas', shape=[2, 12, 4, 4], dtype='float32')
- im_shape = paddle.static.data(
- name='im_shape', shape=[2, 2], dtype='float32')
- anchors = paddle.static.data(
- name='anchors', shape=[4, 4, 3, 4], dtype='float32')
- variances = paddle.static.data(
- name='var', shape=[4, 4, 3, 4], dtype='float32')
- rois, roi_probs, rois_num = ops.generate_proposals(
- scores,
- bbox_deltas,
- im_shape,
- anchors,
- variances,
- pre_nms_top_n=10,
- post_nms_top_n=5,
- return_rois_num=True)
- rois_stat, roi_probs_stat, rois_num_stat = self.get_static_graph_result(
- feed={
- 'scores': scores_np,
- 'bbox_deltas': bbox_deltas_np,
- 'im_shape': im_shape_np,
- 'anchors': anchors_np,
- 'var': variances_np
- },
- fetch_list=[rois, roi_probs, rois_num],
- with_lod=True)
- with self.dynamic_graph():
- scores_dy = base.to_variable(scores_np)
- bbox_deltas_dy = base.to_variable(bbox_deltas_np)
- im_shape_dy = base.to_variable(im_shape_np)
- anchors_dy = base.to_variable(anchors_np)
- variances_dy = base.to_variable(variances_np)
- rois, roi_probs, rois_num = ops.generate_proposals(
- scores_dy,
- bbox_deltas_dy,
- im_shape_dy,
- anchors_dy,
- variances_dy,
- pre_nms_top_n=10,
- post_nms_top_n=5,
- return_rois_num=True)
- rois_dy = rois.numpy()
- roi_probs_dy = roi_probs.numpy()
- rois_num_dy = rois_num.numpy()
- self.assertTrue(np.array_equal(np.array(rois_stat), rois_dy))
- self.assertTrue(np.array_equal(np.array(roi_probs_stat), roi_probs_dy))
- self.assertTrue(np.array_equal(np.array(rois_num_stat), rois_num_dy))
- if __name__ == '__main__':
- unittest.main()
|