123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import math
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.nn.initializer import Normal
- __all__ = ["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- num_channels,
- num_filters,
- filter_size,
- stride=1,
- dilation=1,
- groups=1,
- act=None,
- lr_mult=1.0,
- name=None,
- data_format="NCHW"):
- super(ConvBNLayer, self).__init__()
- conv_stdv = filter_size * filter_size * num_filters
- self._conv = nn.Conv2D(
- in_channels=num_channels,
- out_channels=num_filters,
- kernel_size=filter_size,
- stride=stride,
- padding=(filter_size - 1) // 2,
- dilation=dilation,
- groups=groups,
- weight_attr=ParamAttr(
- learning_rate=lr_mult,
- initializer=Normal(0, math.sqrt(2. / conv_stdv))),
- bias_attr=False,
- data_format=data_format)
- self._batch_norm = nn.BatchNorm2D(num_filters)
- self.act = act
- def forward(self, inputs):
- y = self._conv(inputs)
- y = self._batch_norm(y)
- if self.act:
- y = getattr(F, self.act)(y)
- return y
- class BottleneckBlock(nn.Layer):
- def __init__(self,
- num_channels,
- num_filters,
- stride,
- shortcut=True,
- name=None,
- lr_mult=1.0,
- dilation=1,
- data_format="NCHW"):
- super(BottleneckBlock, self).__init__()
- self.conv0 = ConvBNLayer(
- num_channels=num_channels,
- num_filters=num_filters,
- filter_size=1,
- dilation=dilation,
- act="relu",
- lr_mult=lr_mult,
- name=name + "_branch2a",
- data_format=data_format)
- self.conv1 = ConvBNLayer(
- num_channels=num_filters,
- num_filters=num_filters,
- filter_size=3,
- dilation=dilation,
- stride=stride,
- act="relu",
- lr_mult=lr_mult,
- name=name + "_branch2b",
- data_format=data_format)
- self.conv2 = ConvBNLayer(
- num_channels=num_filters,
- num_filters=num_filters * 4,
- filter_size=1,
- dilation=dilation,
- act=None,
- lr_mult=lr_mult,
- name=name + "_branch2c",
- data_format=data_format)
- if not shortcut:
- self.short = ConvBNLayer(
- num_channels=num_channels,
- num_filters=num_filters * 4,
- filter_size=1,
- dilation=dilation,
- stride=stride,
- lr_mult=lr_mult,
- name=name + "_branch1",
- data_format=data_format)
- self.shortcut = shortcut
- self._num_channels_out = num_filters * 4
- def forward(self, inputs):
- y = self.conv0(inputs)
- conv1 = self.conv1(y)
- conv2 = self.conv2(conv1)
- if self.shortcut:
- short = inputs
- else:
- short = self.short(inputs)
- y = paddle.add(x=short, y=conv2)
- y = F.relu(y)
- return y
- class BasicBlock(nn.Layer):
- def __init__(self,
- num_channels,
- num_filters,
- stride,
- shortcut=True,
- name=None,
- data_format="NCHW"):
- super(BasicBlock, self).__init__()
- self.stride = stride
- self.conv0 = ConvBNLayer(
- num_channels=num_channels,
- num_filters=num_filters,
- filter_size=3,
- stride=stride,
- act="relu",
- name=name + "_branch2a",
- data_format=data_format)
- self.conv1 = ConvBNLayer(
- num_channels=num_filters,
- num_filters=num_filters,
- filter_size=3,
- act=None,
- name=name + "_branch2b",
- data_format=data_format)
- if not shortcut:
- self.short = ConvBNLayer(
- num_channels=num_channels,
- num_filters=num_filters,
- filter_size=1,
- stride=stride,
- name=name + "_branch1",
- data_format=data_format)
- self.shortcut = shortcut
- def forward(self, inputs):
- y = self.conv0(inputs)
- conv1 = self.conv1(y)
- if self.shortcut:
- short = inputs
- else:
- short = self.short(inputs)
- y = paddle.add(x=short, y=conv1)
- y = F.relu(y)
- return y
- class ResNet(nn.Layer):
- def __init__(self,
- layers=50,
- lr_mult=1.0,
- last_conv_stride=2,
- last_conv_dilation=1):
- super(ResNet, self).__init__()
- self.layers = layers
- self.data_format = "NCHW"
- self.input_image_channel = 3
- supported_layers = [18, 34, 50, 101, 152]
- assert layers in supported_layers, \
- "supported layers are {} but input layer is {}".format(
- supported_layers, layers)
- if layers == 18:
- depth = [2, 2, 2, 2]
- elif layers == 34 or layers == 50:
- depth = [3, 4, 6, 3]
- elif layers == 101:
- depth = [3, 4, 23, 3]
- elif layers == 152:
- depth = [3, 8, 36, 3]
- num_channels = [64, 256, 512,
- 1024] if layers >= 50 else [64, 64, 128, 256]
- num_filters = [64, 128, 256, 512]
- self.conv = ConvBNLayer(
- num_channels=self.input_image_channel,
- num_filters=64,
- filter_size=7,
- stride=2,
- act="relu",
- lr_mult=lr_mult,
- name="conv1",
- data_format=self.data_format)
- self.pool2d_max = nn.MaxPool2D(
- kernel_size=3, stride=2, padding=1, data_format=self.data_format)
- self.block_list = []
- if layers >= 50:
- for block in range(len(depth)):
- shortcut = False
- for i in range(depth[block]):
- if layers in [101, 152] and block == 2:
- if i == 0:
- conv_name = "res" + str(block + 2) + "a"
- else:
- conv_name = "res" + str(block + 2) + "b" + str(i)
- else:
- conv_name = "res" + str(block + 2) + chr(97 + i)
- if i != 0 or block == 0:
- stride = 1
- elif block == len(depth) - 1:
- stride = last_conv_stride
- else:
- stride = 2
- bottleneck_block = self.add_sublayer(
- conv_name,
- BottleneckBlock(
- num_channels=num_channels[block]
- if i == 0 else num_filters[block] * 4,
- num_filters=num_filters[block],
- stride=stride,
- shortcut=shortcut,
- name=conv_name,
- lr_mult=lr_mult,
- dilation=last_conv_dilation
- if block == len(depth) - 1 else 1,
- data_format=self.data_format))
- self.block_list.append(bottleneck_block)
- shortcut = True
- else:
- for block in range(len(depth)):
- shortcut = False
- for i in range(depth[block]):
- conv_name = "res" + str(block + 2) + chr(97 + i)
- basic_block = self.add_sublayer(
- conv_name,
- BasicBlock(
- num_channels=num_channels[block]
- if i == 0 else num_filters[block],
- num_filters=num_filters[block],
- stride=2 if i == 0 and block != 0 else 1,
- shortcut=shortcut,
- name=conv_name,
- data_format=self.data_format))
- self.block_list.append(basic_block)
- shortcut = True
- def forward(self, inputs):
- y = self.conv(inputs)
- y = self.pool2d_max(y)
- for block in self.block_list:
- y = block(y)
- return y
- def ResNet18(**args):
- model = ResNet(layers=18, **args)
- return model
- def ResNet34(**args):
- model = ResNet(layers=34, **args)
- return model
- def ResNet50(pretrained=None, **args):
- model = ResNet(layers=50, **args)
- if pretrained is not None:
- if not (os.path.isdir(pretrained) or
- os.path.exists(pretrained + '.pdparams')):
- raise ValueError("Model pretrain path {} does not "
- "exists.".format(pretrained))
- param_state_dict = paddle.load(pretrained + '.pdparams')
- model.set_dict(param_state_dict)
- return model
- def ResNet101(pretrained=None, **args):
- model = ResNet(layers=101, **args)
- if pretrained is not None:
- if not (os.path.isdir(pretrained) or
- os.path.exists(pretrained + '.pdparams')):
- raise ValueError("Model pretrain path {} does not "
- "exists.".format(pretrained))
- param_state_dict = paddle.load(pretrained + '.pdparams')
- model.set_dict(param_state_dict)
- return model
- def ResNet152(**args):
- model = ResNet(layers=152, **args)
- return model
|