123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.nn.initializer import Normal, Constant
- from paddle import ParamAttr
- from paddle.nn import AdaptiveAvgPool2D, BatchNorm2D, Conv2D, Linear
- from paddle.regularizer import L2Decay
- from paddle.nn.initializer import KaimingNormal, XavierNormal
- from ppdet.core.workspace import register
- __all__ = ['PPLCNetEmbedding']
- # Each element(list) represents a depthwise block, which is composed of k, in_c, out_c, s, use_se.
- # k: kernel_size
- # in_c: input channel number in depthwise block
- # out_c: output channel number in depthwise block
- # s: stride in depthwise block
- # use_se: whether to use SE block
- NET_CONFIG = {
- "blocks2":
- #k, in_c, out_c, s, use_se
- [[3, 16, 32, 1, False]],
- "blocks3": [[3, 32, 64, 2, False], [3, 64, 64, 1, False]],
- "blocks4": [[3, 64, 128, 2, False], [3, 128, 128, 1, False]],
- "blocks5": [[3, 128, 256, 2, False], [5, 256, 256, 1, False],
- [5, 256, 256, 1, False], [5, 256, 256, 1, False],
- [5, 256, 256, 1, False], [5, 256, 256, 1, False]],
- "blocks6": [[5, 256, 512, 2, True], [5, 512, 512, 1, True]]
- }
- def make_divisible(v, divisor=8, min_value=None):
- if min_value is None:
- min_value = divisor
- new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
- if new_v < 0.9 * v:
- new_v += divisor
- return new_v
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- num_channels,
- filter_size,
- num_filters,
- stride,
- num_groups=1):
- super().__init__()
- self.conv = Conv2D(
- in_channels=num_channels,
- out_channels=num_filters,
- kernel_size=filter_size,
- stride=stride,
- padding=(filter_size - 1) // 2,
- groups=num_groups,
- weight_attr=ParamAttr(initializer=KaimingNormal()),
- bias_attr=False)
- self.bn = BatchNorm2D(
- num_filters,
- weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
- bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
- self.hardswish = nn.Hardswish()
- def forward(self, x):
- x = self.conv(x)
- x = self.bn(x)
- x = self.hardswish(x)
- return x
- class DepthwiseSeparable(nn.Layer):
- def __init__(self,
- num_channels,
- num_filters,
- stride,
- dw_size=3,
- use_se=False):
- super().__init__()
- self.use_se = use_se
- self.dw_conv = ConvBNLayer(
- num_channels=num_channels,
- num_filters=num_channels,
- filter_size=dw_size,
- stride=stride,
- num_groups=num_channels)
- if use_se:
- self.se = SEModule(num_channels)
- self.pw_conv = ConvBNLayer(
- num_channels=num_channels,
- filter_size=1,
- num_filters=num_filters,
- stride=1)
- def forward(self, x):
- x = self.dw_conv(x)
- if self.use_se:
- x = self.se(x)
- x = self.pw_conv(x)
- return x
- class SEModule(nn.Layer):
- def __init__(self, channel, reduction=4):
- super().__init__()
- self.avg_pool = AdaptiveAvgPool2D(1)
- self.conv1 = Conv2D(
- in_channels=channel,
- out_channels=channel // reduction,
- kernel_size=1,
- stride=1,
- padding=0)
- self.relu = nn.ReLU()
- self.conv2 = Conv2D(
- in_channels=channel // reduction,
- out_channels=channel,
- kernel_size=1,
- stride=1,
- padding=0)
- self.hardsigmoid = nn.Hardsigmoid()
- def forward(self, x):
- identity = x
- x = self.avg_pool(x)
- x = self.conv1(x)
- x = self.relu(x)
- x = self.conv2(x)
- x = self.hardsigmoid(x)
- x = paddle.multiply(x=identity, y=x)
- return x
- class PPLCNet(nn.Layer):
- """
- PP-LCNet, see https://arxiv.org/abs/2109.15099.
- This code is different from PPLCNet in ppdet/modeling/backbones/lcnet.py
- or in PaddleClas, because the output is the flatten feature of last_conv.
- Args:
- scale (float): Scale ratio of channels.
- class_expand (int): Number of channels of conv feature.
- """
- def __init__(self, scale=1.0, class_expand=1280):
- super(PPLCNet, self).__init__()
- self.scale = scale
- self.class_expand = class_expand
- self.conv1 = ConvBNLayer(
- num_channels=3,
- filter_size=3,
- num_filters=make_divisible(16 * scale),
- stride=2)
- self.blocks2 = nn.Sequential(*[
- DepthwiseSeparable(
- num_channels=make_divisible(in_c * scale),
- num_filters=make_divisible(out_c * scale),
- dw_size=k,
- stride=s,
- use_se=se)
- for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks2"])
- ])
- self.blocks3 = nn.Sequential(*[
- DepthwiseSeparable(
- num_channels=make_divisible(in_c * scale),
- num_filters=make_divisible(out_c * scale),
- dw_size=k,
- stride=s,
- use_se=se)
- for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks3"])
- ])
- self.blocks4 = nn.Sequential(*[
- DepthwiseSeparable(
- num_channels=make_divisible(in_c * scale),
- num_filters=make_divisible(out_c * scale),
- dw_size=k,
- stride=s,
- use_se=se)
- for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks4"])
- ])
- self.blocks5 = nn.Sequential(*[
- DepthwiseSeparable(
- num_channels=make_divisible(in_c * scale),
- num_filters=make_divisible(out_c * scale),
- dw_size=k,
- stride=s,
- use_se=se)
- for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks5"])
- ])
- self.blocks6 = nn.Sequential(*[
- DepthwiseSeparable(
- num_channels=make_divisible(in_c * scale),
- num_filters=make_divisible(out_c * scale),
- dw_size=k,
- stride=s,
- use_se=se)
- for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks6"])
- ])
- self.avg_pool = AdaptiveAvgPool2D(1)
- self.last_conv = Conv2D(
- in_channels=make_divisible(NET_CONFIG["blocks6"][-1][2] * scale),
- out_channels=self.class_expand,
- kernel_size=1,
- stride=1,
- padding=0,
- bias_attr=False)
- self.hardswish = nn.Hardswish()
- self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
- def forward(self, x):
- x = self.conv1(x)
- x = self.blocks2(x)
- x = self.blocks3(x)
- x = self.blocks4(x)
- x = self.blocks5(x)
- x = self.blocks6(x)
- x = self.avg_pool(x)
- x = self.last_conv(x)
- x = self.hardswish(x)
- x = self.flatten(x)
- return x
- class FC(nn.Layer):
- def __init__(self, input_ch, output_ch):
- super(FC, self).__init__()
- weight_attr = ParamAttr(initializer=XavierNormal())
- self.fc = paddle.nn.Linear(input_ch, output_ch, weight_attr=weight_attr)
- def forward(self, x):
- out = self.fc(x)
- return out
- @register
- class PPLCNetEmbedding(nn.Layer):
- """
- PPLCNet Embedding
- Args:
- input_ch (int): Number of channels of input conv feature.
- output_ch (int): Number of channels of output conv feature.
- """
- def __init__(self, scale=2.5, input_ch=1280, output_ch=512):
- super(PPLCNetEmbedding, self).__init__()
- self.backbone = PPLCNet(scale=scale)
- self.neck = FC(input_ch, output_ch)
- def forward(self, x):
- feat = self.backbone(x)
- feat_out = self.neck(feat)
- return feat_out
|