123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is based on https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/matching.py
- """
- import lap
- import scipy
- import numpy as np
- from scipy.spatial.distance import cdist
- from ..motion import kalman_filter
- import warnings
- warnings.filterwarnings("ignore")
- __all__ = [
- 'merge_matches',
- 'linear_assignment',
- 'bbox_ious',
- 'iou_distance',
- 'embedding_distance',
- 'fuse_motion',
- ]
- def merge_matches(m1, m2, shape):
- O, P, Q = shape
- m1 = np.asarray(m1)
- m2 = np.asarray(m2)
- M1 = scipy.sparse.coo_matrix(
- (np.ones(len(m1)), (m1[:, 0], m1[:, 1])), shape=(O, P))
- M2 = scipy.sparse.coo_matrix(
- (np.ones(len(m2)), (m2[:, 0], m2[:, 1])), shape=(P, Q))
- mask = M1 * M2
- match = mask.nonzero()
- match = list(zip(match[0], match[1]))
- unmatched_O = tuple(set(range(O)) - set([i for i, j in match]))
- unmatched_Q = tuple(set(range(Q)) - set([j for i, j in match]))
- return match, unmatched_O, unmatched_Q
- def linear_assignment(cost_matrix, thresh):
- if cost_matrix.size == 0:
- return np.empty(
- (0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(
- range(cost_matrix.shape[1]))
- matches, unmatched_a, unmatched_b = [], [], []
- cost, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
- for ix, mx in enumerate(x):
- if mx >= 0:
- matches.append([ix, mx])
- unmatched_a = np.where(x < 0)[0]
- unmatched_b = np.where(y < 0)[0]
- matches = np.asarray(matches)
- return matches, unmatched_a, unmatched_b
- def bbox_ious(atlbrs, btlbrs):
- boxes = np.ascontiguousarray(atlbrs, dtype=np.float)
- query_boxes = np.ascontiguousarray(btlbrs, dtype=np.float)
- N = boxes.shape[0]
- K = query_boxes.shape[0]
- ious = np.zeros((N, K), dtype=boxes.dtype)
- if N * K == 0:
- return ious
- for k in range(K):
- box_area = ((query_boxes[k, 2] - query_boxes[k, 0] + 1) *
- (query_boxes[k, 3] - query_boxes[k, 1] + 1))
- for n in range(N):
- iw = (min(boxes[n, 2], query_boxes[k, 2]) - max(
- boxes[n, 0], query_boxes[k, 0]) + 1)
- if iw > 0:
- ih = (min(boxes[n, 3], query_boxes[k, 3]) - max(
- boxes[n, 1], query_boxes[k, 1]) + 1)
- if ih > 0:
- ua = float((boxes[n, 2] - boxes[n, 0] + 1) * (boxes[
- n, 3] - boxes[n, 1] + 1) + box_area - iw * ih)
- ious[n, k] = iw * ih / ua
- return ious
- def iou_distance(atracks, btracks):
- """
- Compute cost based on IoU between two list[STrack].
- """
- if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) or (
- len(btracks) > 0 and isinstance(btracks[0], np.ndarray)):
- atlbrs = atracks
- btlbrs = btracks
- else:
- atlbrs = [track.tlbr for track in atracks]
- btlbrs = [track.tlbr for track in btracks]
- _ious = bbox_ious(atlbrs, btlbrs)
- cost_matrix = 1 - _ious
- return cost_matrix
- def embedding_distance(tracks, detections, metric='euclidean'):
- """
- Compute cost based on features between two list[STrack].
- """
- cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float)
- if cost_matrix.size == 0:
- return cost_matrix
- det_features = np.asarray(
- [track.curr_feat for track in detections], dtype=np.float)
- track_features = np.asarray(
- [track.smooth_feat for track in tracks], dtype=np.float)
- cost_matrix = np.maximum(0.0, cdist(track_features, det_features,
- metric)) # Nomalized features
- return cost_matrix
- def fuse_motion(kf,
- cost_matrix,
- tracks,
- detections,
- only_position=False,
- lambda_=0.98):
- if cost_matrix.size == 0:
- return cost_matrix
- gating_dim = 2 if only_position else 4
- gating_threshold = kalman_filter.chi2inv95[gating_dim]
- measurements = np.asarray([det.to_xyah() for det in detections])
- for row, track in enumerate(tracks):
- gating_distance = kf.gating_distance(
- track.mean,
- track.covariance,
- measurements,
- only_position,
- metric='maha')
- cost_matrix[row, gating_distance > gating_threshold] = np.inf
- cost_matrix[row] = lambda_ * cost_matrix[row] + (1 - lambda_
- ) * gating_distance
- return cost_matrix
|