123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from ppdet.core.workspace import register
- from ..ops import iou_similarity
- from ..bbox_utils import bbox2delta
- __all__ = ['SSDLoss']
- @register
- class SSDLoss(nn.Layer):
- """
- SSDLoss
- Args:
- overlap_threshold (float32, optional): IoU threshold for negative bboxes
- and positive bboxes, 0.5 by default.
- neg_pos_ratio (float): The ratio of negative samples / positive samples.
- loc_loss_weight (float): The weight of loc_loss.
- conf_loss_weight (float): The weight of conf_loss.
- prior_box_var (list): Variances corresponding to prior box coord, [0.1,
- 0.1, 0.2, 0.2] by default.
- """
- def __init__(self,
- overlap_threshold=0.5,
- neg_pos_ratio=3.0,
- loc_loss_weight=1.0,
- conf_loss_weight=1.0,
- prior_box_var=[0.1, 0.1, 0.2, 0.2]):
- super(SSDLoss, self).__init__()
- self.overlap_threshold = overlap_threshold
- self.neg_pos_ratio = neg_pos_ratio
- self.loc_loss_weight = loc_loss_weight
- self.conf_loss_weight = conf_loss_weight
- self.prior_box_var = [1. / a for a in prior_box_var]
- def _bipartite_match_for_batch(self, gt_bbox, gt_label, prior_boxes,
- bg_index):
- """
- Args:
- gt_bbox (Tensor): [B, N, 4]
- gt_label (Tensor): [B, N, 1]
- prior_boxes (Tensor): [A, 4]
- bg_index (int): Background class index
- """
- batch_size, num_priors = gt_bbox.shape[0], prior_boxes.shape[0]
- ious = iou_similarity(gt_bbox.reshape((-1, 4)), prior_boxes).reshape(
- (batch_size, -1, num_priors))
- # For each prior box, get the max IoU of all GTs.
- prior_max_iou, prior_argmax_iou = ious.max(axis=1), ious.argmax(axis=1)
- # For each GT, get the max IoU of all prior boxes.
- gt_max_iou, gt_argmax_iou = ious.max(axis=2), ious.argmax(axis=2)
- # Gather target bbox and label according to 'prior_argmax_iou' index.
- batch_ind = paddle.arange(end=batch_size, dtype='int64').unsqueeze(-1)
- prior_argmax_iou = paddle.stack(
- [batch_ind.tile([1, num_priors]), prior_argmax_iou], axis=-1)
- targets_bbox = paddle.gather_nd(gt_bbox, prior_argmax_iou)
- targets_label = paddle.gather_nd(gt_label, prior_argmax_iou)
- # Assign negative
- bg_index_tensor = paddle.full([batch_size, num_priors, 1], bg_index,
- 'int64')
- targets_label = paddle.where(
- prior_max_iou.unsqueeze(-1) < self.overlap_threshold,
- bg_index_tensor, targets_label)
- # Ensure each GT can match the max IoU prior box.
- batch_ind = (batch_ind * num_priors + gt_argmax_iou).flatten()
- targets_bbox = paddle.scatter(
- targets_bbox.reshape([-1, 4]), batch_ind,
- gt_bbox.reshape([-1, 4])).reshape([batch_size, -1, 4])
- targets_label = paddle.scatter(
- targets_label.reshape([-1, 1]), batch_ind,
- gt_label.reshape([-1, 1])).reshape([batch_size, -1, 1])
- targets_label[:, :1] = bg_index
- # Encode box
- prior_boxes = prior_boxes.unsqueeze(0).tile([batch_size, 1, 1])
- targets_bbox = bbox2delta(
- prior_boxes.reshape([-1, 4]),
- targets_bbox.reshape([-1, 4]), self.prior_box_var)
- targets_bbox = targets_bbox.reshape([batch_size, -1, 4])
- return targets_bbox, targets_label
- def _mine_hard_example(self,
- conf_loss,
- targets_label,
- bg_index,
- mine_neg_ratio=0.01):
- pos = (targets_label != bg_index).astype(conf_loss.dtype)
- num_pos = pos.sum(axis=1, keepdim=True)
- neg = (targets_label == bg_index).astype(conf_loss.dtype)
- conf_loss = conf_loss.detach() * neg
- loss_idx = conf_loss.argsort(axis=1, descending=True)
- idx_rank = loss_idx.argsort(axis=1)
- num_negs = []
- for i in range(conf_loss.shape[0]):
- cur_num_pos = num_pos[i]
- num_neg = paddle.clip(
- cur_num_pos * self.neg_pos_ratio, max=pos.shape[1])
- num_neg = num_neg if num_neg > 0 else paddle.to_tensor(
- [pos.shape[1] * mine_neg_ratio])
- num_negs.append(num_neg)
- num_negs = paddle.stack(num_negs).expand_as(idx_rank)
- neg_mask = (idx_rank < num_negs).astype(conf_loss.dtype)
- return (neg_mask + pos).astype('bool')
- def forward(self, boxes, scores, gt_bbox, gt_label, prior_boxes):
- boxes = paddle.concat(boxes, axis=1)
- scores = paddle.concat(scores, axis=1)
- gt_label = gt_label.unsqueeze(-1).astype('int64')
- prior_boxes = paddle.concat(prior_boxes, axis=0)
- bg_index = scores.shape[-1] - 1
- # Match bbox and get targets.
- targets_bbox, targets_label = \
- self._bipartite_match_for_batch(gt_bbox, gt_label, prior_boxes, bg_index)
- targets_bbox.stop_gradient = True
- targets_label.stop_gradient = True
- # Compute regression loss.
- # Select positive samples.
- bbox_mask = paddle.tile(targets_label != bg_index, [1, 1, 4])
- if bbox_mask.astype(boxes.dtype).sum() > 0:
- location = paddle.masked_select(boxes, bbox_mask)
- targets_bbox = paddle.masked_select(targets_bbox, bbox_mask)
- loc_loss = F.smooth_l1_loss(location, targets_bbox, reduction='sum')
- loc_loss = loc_loss * self.loc_loss_weight
- else:
- loc_loss = paddle.zeros([1])
- # Compute confidence loss.
- conf_loss = F.cross_entropy(scores, targets_label, reduction="none")
- # Mining hard examples.
- label_mask = self._mine_hard_example(
- conf_loss.squeeze(-1), targets_label.squeeze(-1), bg_index)
- conf_loss = paddle.masked_select(conf_loss, label_mask.unsqueeze(-1))
- conf_loss = conf_loss.sum() * self.conf_loss_weight
- # Compute overall weighted loss.
- normalizer = (targets_label != bg_index).astype('float32').sum().clip(
- min=1)
- loss = (conf_loss + loc_loss) / normalizer
- return loss
|