123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is based on https://github.com/PeizeSun/SparseR-CNN/blob/main/projects/SparseRCNN/sparsercnn/loss.py
- Ths copyright of PeizeSun/SparseR-CNN is as follows:
- MIT License [see LICENSE for details]
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from scipy.optimize import linear_sum_assignment
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.metric import accuracy
- from ppdet.core.workspace import register
- from ppdet.modeling.losses.iou_loss import GIoULoss
- __all__ = ["SparseRCNNLoss"]
- @register
- class SparseRCNNLoss(nn.Layer):
- """ This class computes the loss for SparseRCNN.
- The process happens in two steps:
- 1) we compute hungarian assignment between ground truth boxes and the outputs of the model
- 2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
- """
- __shared__ = ['num_classes']
- def __init__(self,
- losses,
- focal_loss_alpha,
- focal_loss_gamma,
- num_classes=80,
- class_weight=2.,
- l1_weight=5.,
- giou_weight=2.):
- """ Create the criterion.
- Parameters:
- num_classes: number of object categories, omitting the special no-object category
- weight_dict: dict containing as key the names of the losses and as values their relative weight.
- losses: list of all the losses to be applied. See get_loss for list of available losses.
- matcher: module able to compute a matching between targets and proposals
- """
- super().__init__()
- self.num_classes = num_classes
- weight_dict = {
- "loss_ce": class_weight,
- "loss_bbox": l1_weight,
- "loss_giou": giou_weight
- }
- self.weight_dict = weight_dict
- self.losses = losses
- self.giou_loss = GIoULoss(reduction="sum")
- self.focal_loss_alpha = focal_loss_alpha
- self.focal_loss_gamma = focal_loss_gamma
- self.matcher = HungarianMatcher(focal_loss_alpha, focal_loss_gamma,
- class_weight, l1_weight, giou_weight)
- def loss_labels(self, outputs, targets, indices, num_boxes, log=True):
- """Classification loss (NLL)
- targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
- """
- assert 'pred_logits' in outputs
- src_logits = outputs['pred_logits']
- idx = self._get_src_permutation_idx(indices)
- target_classes_o = paddle.concat([
- paddle.gather(
- t["labels"], J, axis=0) for t, (_, J) in zip(targets, indices)
- ])
- target_classes = paddle.full(
- src_logits.shape[:2], self.num_classes, dtype="int32")
- for i, ind in enumerate(zip(idx[0], idx[1])):
- target_classes[int(ind[0]), int(ind[1])] = target_classes_o[i]
- target_classes.stop_gradient = True
- src_logits = src_logits.flatten(start_axis=0, stop_axis=1)
- # prepare one_hot target.
- target_classes = target_classes.flatten(start_axis=0, stop_axis=1)
- class_ids = paddle.arange(0, self.num_classes)
- labels = (target_classes.unsqueeze(-1) == class_ids).astype("float32")
- labels.stop_gradient = True
- # comp focal loss.
- class_loss = sigmoid_focal_loss(
- src_logits,
- labels,
- alpha=self.focal_loss_alpha,
- gamma=self.focal_loss_gamma,
- reduction="sum", ) / num_boxes
- losses = {'loss_ce': class_loss}
- if log:
- label_acc = target_classes_o.unsqueeze(-1)
- src_idx = [src for (src, _) in indices]
- pred_list = []
- for i in range(outputs["pred_logits"].shape[0]):
- pred_list.append(
- paddle.gather(
- outputs["pred_logits"][i], src_idx[i], axis=0))
- pred = F.sigmoid(paddle.concat(pred_list, axis=0))
- acc = accuracy(pred, label_acc.astype("int64"))
- losses["acc"] = acc
- return losses
- def loss_boxes(self, outputs, targets, indices, num_boxes):
- """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
- targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
- The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
- """
- assert 'pred_boxes' in outputs # [batch_size, num_proposals, 4]
- src_idx = [src for (src, _) in indices]
- src_boxes_list = []
- for i in range(outputs["pred_boxes"].shape[0]):
- src_boxes_list.append(
- paddle.gather(
- outputs["pred_boxes"][i], src_idx[i], axis=0))
- src_boxes = paddle.concat(src_boxes_list, axis=0)
- target_boxes = paddle.concat(
- [
- paddle.gather(
- t['boxes'], I, axis=0)
- for t, (_, I) in zip(targets, indices)
- ],
- axis=0)
- target_boxes.stop_gradient = True
- losses = {}
- losses['loss_giou'] = self.giou_loss(src_boxes,
- target_boxes) / num_boxes
- image_size = paddle.concat([v["img_whwh_tgt"] for v in targets])
- src_boxes_ = src_boxes / image_size
- target_boxes_ = target_boxes / image_size
- loss_bbox = F.l1_loss(src_boxes_, target_boxes_, reduction='sum')
- losses['loss_bbox'] = loss_bbox / num_boxes
- return losses
- def _get_src_permutation_idx(self, indices):
- # permute predictions following indices
- batch_idx = paddle.concat(
- [paddle.full_like(src, i) for i, (src, _) in enumerate(indices)])
- src_idx = paddle.concat([src for (src, _) in indices])
- return batch_idx, src_idx
- def _get_tgt_permutation_idx(self, indices):
- # permute targets following indices
- batch_idx = paddle.concat(
- [paddle.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
- tgt_idx = paddle.concat([tgt for (_, tgt) in indices])
- return batch_idx, tgt_idx
- def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
- loss_map = {
- 'labels': self.loss_labels,
- 'boxes': self.loss_boxes,
- }
- assert loss in loss_map, f'do you really want to compute {loss} loss?'
- return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)
- def forward(self, outputs, targets):
- """ This performs the loss computation.
- Parameters:
- outputs: dict of tensors, see the output specification of the model for the format
- targets: list of dicts, such that len(targets) == batch_size.
- The expected keys in each dict depends on the losses applied, see each loss' doc
- """
- outputs_without_aux = {
- k: v
- for k, v in outputs.items() if k != 'aux_outputs'
- }
- # Retrieve the matching between the outputs of the last layer and the targets
- indices = self.matcher(outputs_without_aux, targets)
- # Compute the average number of target boxes across all nodes, for normalization purposes
- num_boxes = sum(len(t["labels"]) for t in targets)
- num_boxes = paddle.to_tensor(
- [num_boxes],
- dtype="float32",
- place=next(iter(outputs.values())).place)
- # Compute all the requested losses
- losses = {}
- for loss in self.losses:
- losses.update(
- self.get_loss(loss, outputs, targets, indices, num_boxes))
- # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
- if 'aux_outputs' in outputs:
- for i, aux_outputs in enumerate(outputs['aux_outputs']):
- indices = self.matcher(aux_outputs, targets)
- for loss in self.losses:
- kwargs = {}
- if loss == 'labels':
- # Logging is enabled only for the last layer
- kwargs = {'log': False}
- l_dict = self.get_loss(loss, aux_outputs, targets, indices,
- num_boxes, **kwargs)
- w_dict = {}
- for k in l_dict.keys():
- if k in self.weight_dict:
- w_dict[k + f'_{i}'] = l_dict[k] * self.weight_dict[
- k]
- else:
- w_dict[k + f'_{i}'] = l_dict[k]
- losses.update(w_dict)
- return losses
- class HungarianMatcher(nn.Layer):
- """This class computes an assignment between the targets and the predictions of the network
- For efficiency reasons, the targets don't include the no_object. Because of this, in general,
- there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions,
- while the others are un-matched (and thus treated as non-objects).
- """
- def __init__(self,
- focal_loss_alpha,
- focal_loss_gamma,
- cost_class: float=1,
- cost_bbox: float=1,
- cost_giou: float=1):
- """Creates the matcher
- Params:
- cost_class: This is the relative weight of the classification error in the matching cost
- cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost
- cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost
- """
- super().__init__()
- self.cost_class = cost_class
- self.cost_bbox = cost_bbox
- self.cost_giou = cost_giou
- self.focal_loss_alpha = focal_loss_alpha
- self.focal_loss_gamma = focal_loss_gamma
- assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0"
- @paddle.no_grad()
- def forward(self, outputs, targets):
- """ Performs the matching
- Args:
- outputs: This is a dict that contains at least these entries:
- "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
- "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates
- eg. outputs = {"pred_logits": pred_logits, "pred_boxes": pred_boxes}
- targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
- "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
- objects in the target) containing the class labels
- "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates
- eg. targets = [{"labels":labels, "boxes": boxes}, ...,{"labels":labels, "boxes": boxes}]
- Returns:
- A list of size batch_size, containing tuples of (index_i, index_j) where:
- - index_i is the indices of the selected predictions (in order)
- - index_j is the indices of the corresponding selected targets (in order)
- For each batch element, it holds:
- len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
- """
- bs, num_queries = outputs["pred_logits"].shape[:2]
- # We flatten to compute the cost matrices in a batch
- out_prob = F.sigmoid(outputs["pred_logits"].flatten(
- start_axis=0, stop_axis=1))
- out_bbox = outputs["pred_boxes"].flatten(start_axis=0, stop_axis=1)
- # Also concat the target labels and boxes
- tgt_ids = paddle.concat([v["labels"] for v in targets])
- assert (tgt_ids > -1).all()
- tgt_bbox = paddle.concat([v["boxes"] for v in targets])
- # Compute the classification cost. Contrary to the loss, we don't use the NLL,
- # but approximate it in 1 - proba[target class].
- # The 1 is a constant that doesn't change the matching, it can be ommitted.
- # Compute the classification cost.
- alpha = self.focal_loss_alpha
- gamma = self.focal_loss_gamma
- neg_cost_class = (1 - alpha) * (out_prob**gamma) * (-(
- 1 - out_prob + 1e-8).log())
- pos_cost_class = alpha * ((1 - out_prob)
- **gamma) * (-(out_prob + 1e-8).log())
- cost_class = paddle.gather(
- pos_cost_class, tgt_ids, axis=1) - paddle.gather(
- neg_cost_class, tgt_ids, axis=1)
- # Compute the L1 cost between boxes
- image_size_out = paddle.concat(
- [v["img_whwh"].unsqueeze(0) for v in targets])
- image_size_out = image_size_out.unsqueeze(1).tile(
- [1, num_queries, 1]).flatten(
- start_axis=0, stop_axis=1)
- image_size_tgt = paddle.concat([v["img_whwh_tgt"] for v in targets])
- out_bbox_ = out_bbox / image_size_out
- tgt_bbox_ = tgt_bbox / image_size_tgt
- cost_bbox = F.l1_loss(
- out_bbox_.unsqueeze(-2), tgt_bbox_,
- reduction='none').sum(-1) # [batch_size * num_queries, num_tgts]
- # Compute the giou cost betwen boxes
- cost_giou = -get_bboxes_giou(out_bbox, tgt_bbox)
- # Final cost matrix
- C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou
- C = C.reshape([bs, num_queries, -1])
- sizes = [len(v["boxes"]) for v in targets]
- indices = [
- linear_sum_assignment(c[i].numpy())
- for i, c in enumerate(C.split(sizes, -1))
- ]
- return [(paddle.to_tensor(
- i, dtype="int32"), paddle.to_tensor(
- j, dtype="int32")) for i, j in indices]
- def box_area(boxes):
- assert (boxes[:, 2:] >= boxes[:, :2]).all()
- wh = boxes[:, 2:] - boxes[:, :2]
- return wh[:, 0] * wh[:, 1]
- def boxes_iou(boxes1, boxes2):
- '''
- Compute iou
- Args:
- boxes1 (paddle.tensor) shape (N, 4)
- boxes2 (paddle.tensor) shape (M, 4)
- Return:
- (paddle.tensor) shape (N, M)
- '''
- area1 = box_area(boxes1)
- area2 = box_area(boxes2)
- lt = paddle.maximum(boxes1.unsqueeze(-2)[:, :, :2], boxes2[:, :2])
- rb = paddle.minimum(boxes1.unsqueeze(-2)[:, :, 2:], boxes2[:, 2:])
- wh = (rb - lt).astype("float32").clip(min=1e-9)
- inter = wh[:, :, 0] * wh[:, :, 1]
- union = area1.unsqueeze(-1) + area2 - inter + 1e-9
- iou = inter / union
- return iou, union
- def get_bboxes_giou(boxes1, boxes2, eps=1e-9):
- """calculate the ious of boxes1 and boxes2
- Args:
- boxes1 (Tensor): shape [N, 4]
- boxes2 (Tensor): shape [M, 4]
- eps (float): epsilon to avoid divide by zero
- Return:
- ious (Tensor): ious of boxes1 and boxes2, with the shape [N, M]
- """
- assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
- assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
- iou, union = boxes_iou(boxes1, boxes2)
- lt = paddle.minimum(boxes1.unsqueeze(-2)[:, :, :2], boxes2[:, :2])
- rb = paddle.maximum(boxes1.unsqueeze(-2)[:, :, 2:], boxes2[:, 2:])
- wh = (rb - lt).astype("float32").clip(min=eps)
- enclose_area = wh[:, :, 0] * wh[:, :, 1]
- giou = iou - (enclose_area - union) / enclose_area
- return giou
- def sigmoid_focal_loss(inputs, targets, alpha, gamma, reduction="sum"):
- assert reduction in ["sum", "mean"
- ], f'do not support this {reduction} reduction?'
- p = F.sigmoid(inputs)
- ce_loss = F.binary_cross_entropy_with_logits(
- inputs, targets, reduction="none")
- p_t = p * targets + (1 - p) * (1 - targets)
- loss = ce_loss * ((1 - p_t)**gamma)
- if alpha >= 0:
- alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
- loss = alpha_t * loss
- if reduction == "mean":
- loss = loss.mean()
- elif reduction == "sum":
- loss = loss.sum()
- return loss
|