123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from ppdet.core.workspace import register
- from ppdet.modeling import ops
- __all__ = ['FCOSLoss']
- def flatten_tensor(inputs, channel_first=False):
- """
- Flatten a Tensor
- Args:
- inputs (Tensor): 4-D Tensor with shape [N, C, H, W] or [N, H, W, C]
- channel_first (bool): If true the dimension order of Tensor is
- [N, C, H, W], otherwise is [N, H, W, C]
- Return:
- output_channel_last (Tensor): The flattened Tensor in channel_last style
- """
- if channel_first:
- input_channel_last = paddle.transpose(inputs, perm=[0, 2, 3, 1])
- else:
- input_channel_last = inputs
- output_channel_last = paddle.flatten(
- input_channel_last, start_axis=0, stop_axis=2)
- return output_channel_last
- @register
- class FCOSLoss(nn.Layer):
- """
- FCOSLoss
- Args:
- loss_alpha (float): alpha in focal loss
- loss_gamma (float): gamma in focal loss
- iou_loss_type (str): location loss type, IoU/GIoU/LINEAR_IoU
- reg_weights (float): weight for location loss
- """
- def __init__(self,
- loss_alpha=0.25,
- loss_gamma=2.0,
- iou_loss_type="giou",
- reg_weights=1.0):
- super(FCOSLoss, self).__init__()
- self.loss_alpha = loss_alpha
- self.loss_gamma = loss_gamma
- self.iou_loss_type = iou_loss_type
- self.reg_weights = reg_weights
- def __iou_loss(self, pred, targets, positive_mask, weights=None):
- """
- Calculate the loss for location prediction
- Args:
- pred (Tensor): bounding boxes prediction
- targets (Tensor): targets for positive samples
- positive_mask (Tensor): mask of positive samples
- weights (Tensor): weights for each positive samples
- Return:
- loss (Tensor): location loss
- """
- plw = pred[:, 0] * positive_mask
- pth = pred[:, 1] * positive_mask
- prw = pred[:, 2] * positive_mask
- pbh = pred[:, 3] * positive_mask
- tlw = targets[:, 0] * positive_mask
- tth = targets[:, 1] * positive_mask
- trw = targets[:, 2] * positive_mask
- tbh = targets[:, 3] * positive_mask
- tlw.stop_gradient = True
- trw.stop_gradient = True
- tth.stop_gradient = True
- tbh.stop_gradient = True
- ilw = paddle.minimum(plw, tlw)
- irw = paddle.minimum(prw, trw)
- ith = paddle.minimum(pth, tth)
- ibh = paddle.minimum(pbh, tbh)
- clw = paddle.maximum(plw, tlw)
- crw = paddle.maximum(prw, trw)
- cth = paddle.maximum(pth, tth)
- cbh = paddle.maximum(pbh, tbh)
- area_predict = (plw + prw) * (pth + pbh)
- area_target = (tlw + trw) * (tth + tbh)
- area_inter = (ilw + irw) * (ith + ibh)
- ious = (area_inter + 1.0) / (
- area_predict + area_target - area_inter + 1.0)
- ious = ious * positive_mask
- if self.iou_loss_type.lower() == "linear_iou":
- loss = 1.0 - ious
- elif self.iou_loss_type.lower() == "giou":
- area_uniou = area_predict + area_target - area_inter
- area_circum = (clw + crw) * (cth + cbh) + 1e-7
- giou = ious - (area_circum - area_uniou) / area_circum
- loss = 1.0 - giou
- elif self.iou_loss_type.lower() == "iou":
- loss = 0.0 - paddle.log(ious)
- else:
- raise KeyError
- if weights is not None:
- loss = loss * weights
- return loss
- def forward(self, cls_logits, bboxes_reg, centerness, tag_labels,
- tag_bboxes, tag_center):
- """
- Calculate the loss for classification, location and centerness
- Args:
- cls_logits (list): list of Tensor, which is predicted
- score for all anchor points with shape [N, M, C]
- bboxes_reg (list): list of Tensor, which is predicted
- offsets for all anchor points with shape [N, M, 4]
- centerness (list): list of Tensor, which is predicted
- centerness for all anchor points with shape [N, M, 1]
- tag_labels (list): list of Tensor, which is category
- targets for each anchor point
- tag_bboxes (list): list of Tensor, which is bounding
- boxes targets for positive samples
- tag_center (list): list of Tensor, which is centerness
- targets for positive samples
- Return:
- loss (dict): loss composed by classification loss, bounding box
- """
- cls_logits_flatten_list = []
- bboxes_reg_flatten_list = []
- centerness_flatten_list = []
- tag_labels_flatten_list = []
- tag_bboxes_flatten_list = []
- tag_center_flatten_list = []
- num_lvl = len(cls_logits)
- for lvl in range(num_lvl):
- cls_logits_flatten_list.append(
- flatten_tensor(cls_logits[lvl], True))
- bboxes_reg_flatten_list.append(
- flatten_tensor(bboxes_reg[lvl], True))
- centerness_flatten_list.append(
- flatten_tensor(centerness[lvl], True))
- tag_labels_flatten_list.append(
- flatten_tensor(tag_labels[lvl], False))
- tag_bboxes_flatten_list.append(
- flatten_tensor(tag_bboxes[lvl], False))
- tag_center_flatten_list.append(
- flatten_tensor(tag_center[lvl], False))
- cls_logits_flatten = paddle.concat(cls_logits_flatten_list, axis=0)
- bboxes_reg_flatten = paddle.concat(bboxes_reg_flatten_list, axis=0)
- centerness_flatten = paddle.concat(centerness_flatten_list, axis=0)
- tag_labels_flatten = paddle.concat(tag_labels_flatten_list, axis=0)
- tag_bboxes_flatten = paddle.concat(tag_bboxes_flatten_list, axis=0)
- tag_center_flatten = paddle.concat(tag_center_flatten_list, axis=0)
- tag_labels_flatten.stop_gradient = True
- tag_bboxes_flatten.stop_gradient = True
- tag_center_flatten.stop_gradient = True
- mask_positive_bool = tag_labels_flatten > 0
- mask_positive_bool.stop_gradient = True
- mask_positive_float = paddle.cast(mask_positive_bool, dtype="float32")
- mask_positive_float.stop_gradient = True
- num_positive_fp32 = paddle.sum(mask_positive_float)
- num_positive_fp32.stop_gradient = True
- num_positive_int32 = paddle.cast(num_positive_fp32, dtype="int32")
- num_positive_int32 = num_positive_int32 * 0 + 1
- num_positive_int32.stop_gradient = True
- normalize_sum = paddle.sum(tag_center_flatten * mask_positive_float)
- normalize_sum.stop_gradient = True
- # 1. cls_logits: sigmoid_focal_loss
- # expand onehot labels
- num_classes = cls_logits_flatten.shape[-1]
- tag_labels_flatten = paddle.squeeze(tag_labels_flatten, axis=-1)
- tag_labels_flatten_bin = F.one_hot(
- tag_labels_flatten, num_classes=1 + num_classes)
- tag_labels_flatten_bin = tag_labels_flatten_bin[:, 1:]
- # sigmoid_focal_loss
- cls_loss = F.sigmoid_focal_loss(
- cls_logits_flatten, tag_labels_flatten_bin) / num_positive_fp32
- # 2. bboxes_reg: giou_loss
- mask_positive_float = paddle.squeeze(mask_positive_float, axis=-1)
- tag_center_flatten = paddle.squeeze(tag_center_flatten, axis=-1)
- reg_loss = self.__iou_loss(
- bboxes_reg_flatten,
- tag_bboxes_flatten,
- mask_positive_float,
- weights=tag_center_flatten)
- reg_loss = reg_loss * mask_positive_float / normalize_sum
- # 3. centerness: sigmoid_cross_entropy_with_logits_loss
- centerness_flatten = paddle.squeeze(centerness_flatten, axis=-1)
- ctn_loss = ops.sigmoid_cross_entropy_with_logits(centerness_flatten,
- tag_center_flatten)
- ctn_loss = ctn_loss * mask_positive_float / num_positive_fp32
- loss_all = {
- "loss_centerness": paddle.sum(ctn_loss),
- "loss_cls": paddle.sum(cls_loss),
- "loss_box": paddle.sum(reg_loss)
- }
- return loss_all
|