1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from ppdet.core.workspace import register, serializable
- __all__ = ['CTFocalLoss']
- @register
- @serializable
- class CTFocalLoss(object):
- """
- CTFocalLoss: CornerNet & CenterNet Focal Loss
- Args:
- loss_weight (float): loss weight
- gamma (float): gamma parameter for Focal Loss
- """
- def __init__(self, loss_weight=1., gamma=2.0):
- self.loss_weight = loss_weight
- self.gamma = gamma
- def __call__(self, pred, target):
- """
- Calculate the loss
- Args:
- pred (Tensor): heatmap prediction
- target (Tensor): target for positive samples
- Return:
- ct_focal_loss (Tensor): Focal Loss used in CornerNet & CenterNet.
- Note that the values in target are in [0, 1] since gaussian is
- used to reduce the punishment and we treat [0, 1) as neg example.
- """
- fg_map = paddle.cast(target == 1, 'float32')
- fg_map.stop_gradient = True
- bg_map = paddle.cast(target < 1, 'float32')
- bg_map.stop_gradient = True
- neg_weights = paddle.pow(1 - target, 4)
- pos_loss = 0 - paddle.log(pred) * paddle.pow(1 - pred,
- self.gamma) * fg_map
- neg_loss = 0 - paddle.log(1 - pred) * paddle.pow(
- pred, self.gamma) * neg_weights * bg_map
- pos_loss = paddle.sum(pos_loss)
- neg_loss = paddle.sum(neg_loss)
- fg_num = paddle.sum(fg_map)
- ct_focal_loss = (pos_loss + neg_loss) / (
- fg_num + paddle.cast(fg_num == 0, 'float32'))
- return ct_focal_loss * self.loss_weight
|