1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- # The code is based on https://github.com/csuhan/s2anet/blob/master/mmdet/models/anchor_heads_rotated/s2anet_head.py
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.nn.initializer import Normal, Constant
- from ppdet.core.workspace import register
- from ppdet.modeling import ops
- from ppdet.modeling import bbox_utils
- from ppdet.modeling.proposal_generator.target_layer import RBoxAssigner
- import numpy as np
- class S2ANetAnchorGenerator(nn.Layer):
- """
- AnchorGenerator by paddle
- """
- def __init__(self, base_size, scales, ratios, scale_major=True, ctr=None):
- super(S2ANetAnchorGenerator, self).__init__()
- self.base_size = base_size
- self.scales = paddle.to_tensor(scales)
- self.ratios = paddle.to_tensor(ratios)
- self.scale_major = scale_major
- self.ctr = ctr
- self.base_anchors = self.gen_base_anchors()
- @property
- def num_base_anchors(self):
- return self.base_anchors.shape[0]
- def gen_base_anchors(self):
- w = self.base_size
- h = self.base_size
- if self.ctr is None:
- x_ctr = 0.5 * (w - 1)
- y_ctr = 0.5 * (h - 1)
- else:
- x_ctr, y_ctr = self.ctr
- h_ratios = paddle.sqrt(self.ratios)
- w_ratios = 1 / h_ratios
- if self.scale_major:
- ws = (w * w_ratios[:] * self.scales[:]).reshape([-1])
- hs = (h * h_ratios[:] * self.scales[:]).reshape([-1])
- else:
- ws = (w * self.scales[:] * w_ratios[:]).reshape([-1])
- hs = (h * self.scales[:] * h_ratios[:]).reshape([-1])
- base_anchors = paddle.stack(
- [
- x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1),
- x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1)
- ],
- axis=-1)
- base_anchors = paddle.round(base_anchors)
- return base_anchors
- def _meshgrid(self, x, y, row_major=True):
- yy, xx = paddle.meshgrid(y, x)
- yy = yy.reshape([-1])
- xx = xx.reshape([-1])
- if row_major:
- return xx, yy
- else:
- return yy, xx
- def forward(self, featmap_size, stride=16):
- # featmap_size*stride project it to original area
- feat_h = featmap_size[0]
- feat_w = featmap_size[1]
- shift_x = paddle.arange(0, feat_w, 1, 'int32') * stride
- shift_y = paddle.arange(0, feat_h, 1, 'int32') * stride
- shift_xx, shift_yy = self._meshgrid(shift_x, shift_y)
- shifts = paddle.stack([shift_xx, shift_yy, shift_xx, shift_yy], axis=-1)
- all_anchors = self.base_anchors[:, :] + shifts[:, :]
- all_anchors = all_anchors.reshape([feat_h * feat_w, 4])
- return all_anchors
- def valid_flags(self, featmap_size, valid_size):
- feat_h, feat_w = featmap_size
- valid_h, valid_w = valid_size
- assert valid_h <= feat_h and valid_w <= feat_w
- valid_x = paddle.zeros([feat_w], dtype='int32')
- valid_y = paddle.zeros([feat_h], dtype='int32')
- valid_x[:valid_w] = 1
- valid_y[:valid_h] = 1
- valid_xx, valid_yy = self._meshgrid(valid_x, valid_y)
- valid = valid_xx & valid_yy
- valid = paddle.reshape(valid, [-1, 1])
- valid = paddle.expand(valid, [-1, self.num_base_anchors]).reshape([-1])
- return valid
- class AlignConv(nn.Layer):
- def __init__(self, in_channels, out_channels, kernel_size=3, groups=1):
- super(AlignConv, self).__init__()
- self.kernel_size = kernel_size
- self.align_conv = paddle.vision.ops.DeformConv2D(
- in_channels,
- out_channels,
- kernel_size=self.kernel_size,
- padding=(self.kernel_size - 1) // 2,
- groups=groups,
- weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
- bias_attr=None)
- @paddle.no_grad()
- def get_offset(self, anchors, featmap_size, stride):
- """
- Args:
- anchors: [M,5] xc,yc,w,h,angle
- featmap_size: (feat_h, feat_w)
- stride: 8
- Returns:
- """
- anchors = paddle.reshape(anchors, [-1, 5]) # (NA,5)
- dtype = anchors.dtype
- feat_h = featmap_size[0]
- feat_w = featmap_size[1]
- pad = (self.kernel_size - 1) // 2
- idx = paddle.arange(-pad, pad + 1, dtype=dtype)
- yy, xx = paddle.meshgrid(idx, idx)
- xx = paddle.reshape(xx, [-1])
- yy = paddle.reshape(yy, [-1])
- # get sampling locations of default conv
- xc = paddle.arange(0, feat_w, dtype=dtype)
- yc = paddle.arange(0, feat_h, dtype=dtype)
- yc, xc = paddle.meshgrid(yc, xc)
- xc = paddle.reshape(xc, [-1, 1])
- yc = paddle.reshape(yc, [-1, 1])
- x_conv = xc + xx
- y_conv = yc + yy
- # get sampling locations of anchors
- # x_ctr, y_ctr, w, h, a = np.unbind(anchors, dim=1)
- x_ctr = anchors[:, 0]
- y_ctr = anchors[:, 1]
- w = anchors[:, 2]
- h = anchors[:, 3]
- a = anchors[:, 4]
- x_ctr = paddle.reshape(x_ctr, [-1, 1])
- y_ctr = paddle.reshape(y_ctr, [-1, 1])
- w = paddle.reshape(w, [-1, 1])
- h = paddle.reshape(h, [-1, 1])
- a = paddle.reshape(a, [-1, 1])
- x_ctr = x_ctr / stride
- y_ctr = y_ctr / stride
- w_s = w / stride
- h_s = h / stride
- cos, sin = paddle.cos(a), paddle.sin(a)
- dw, dh = w_s / self.kernel_size, h_s / self.kernel_size
- x, y = dw * xx, dh * yy
- xr = cos * x - sin * y
- yr = sin * x + cos * y
- x_anchor, y_anchor = xr + x_ctr, yr + y_ctr
- # get offset filed
- offset_x = x_anchor - x_conv
- offset_y = y_anchor - y_conv
- offset = paddle.stack([offset_y, offset_x], axis=-1)
- offset = paddle.reshape(
- offset, [feat_h * feat_w, self.kernel_size * self.kernel_size * 2])
- offset = paddle.transpose(offset, [1, 0])
- offset = paddle.reshape(
- offset,
- [1, self.kernel_size * self.kernel_size * 2, feat_h, feat_w])
- return offset
- def forward(self, x, refine_anchors, featmap_size, stride):
- offset = self.get_offset(refine_anchors, featmap_size, stride)
- x = F.relu(self.align_conv(x, offset))
- return x
- @register
- class S2ANetHead(nn.Layer):
- """
- S2Anet head
- Args:
- stacked_convs (int): number of stacked_convs
- feat_in (int): input channels of feat
- feat_out (int): output channels of feat
- num_classes (int): num_classes
- anchor_strides (list): stride of anchors
- anchor_scales (list): scale of anchors
- anchor_ratios (list): ratios of anchors
- target_means (list): target_means
- target_stds (list): target_stds
- align_conv_type (str): align_conv_type ['Conv', 'AlignConv']
- align_conv_size (int): kernel size of align_conv
- use_sigmoid_cls (bool): use sigmoid_cls or not
- reg_loss_weight (list): loss weight for regression
- """
- __shared__ = ['num_classes']
- __inject__ = ['anchor_assign']
- def __init__(self,
- stacked_convs=2,
- feat_in=256,
- feat_out=256,
- num_classes=15,
- anchor_strides=[8, 16, 32, 64, 128],
- anchor_scales=[4],
- anchor_ratios=[1.0],
- target_means=0.0,
- target_stds=1.0,
- align_conv_type='AlignConv',
- align_conv_size=3,
- use_sigmoid_cls=True,
- anchor_assign=RBoxAssigner().__dict__,
- reg_loss_weight=[1.0, 1.0, 1.0, 1.0, 1.1],
- cls_loss_weight=[1.1, 1.05],
- reg_loss_type='l1'):
- super(S2ANetHead, self).__init__()
- self.stacked_convs = stacked_convs
- self.feat_in = feat_in
- self.feat_out = feat_out
- self.anchor_list = None
- self.anchor_scales = anchor_scales
- self.anchor_ratios = anchor_ratios
- self.anchor_strides = anchor_strides
- self.anchor_strides = paddle.to_tensor(anchor_strides)
- self.anchor_base_sizes = list(anchor_strides)
- self.means = paddle.ones(shape=[5]) * target_means
- self.stds = paddle.ones(shape=[5]) * target_stds
- assert align_conv_type in ['AlignConv', 'Conv', 'DCN']
- self.align_conv_type = align_conv_type
- self.align_conv_size = align_conv_size
- self.use_sigmoid_cls = use_sigmoid_cls
- self.cls_out_channels = num_classes if self.use_sigmoid_cls else 1
- self.sampling = False
- self.anchor_assign = anchor_assign
- self.reg_loss_weight = reg_loss_weight
- self.cls_loss_weight = cls_loss_weight
- self.alpha = 1.0
- self.beta = 1.0
- self.reg_loss_type = reg_loss_type
- self.s2anet_head_out = None
- # anchor
- self.anchor_generators = []
- for anchor_base in self.anchor_base_sizes:
- self.anchor_generators.append(
- S2ANetAnchorGenerator(anchor_base, anchor_scales,
- anchor_ratios))
- self.anchor_generators = nn.LayerList(self.anchor_generators)
- self.fam_cls_convs = nn.Sequential()
- self.fam_reg_convs = nn.Sequential()
- for i in range(self.stacked_convs):
- chan_in = self.feat_in if i == 0 else self.feat_out
- self.fam_cls_convs.add_sublayer(
- 'fam_cls_conv_{}'.format(i),
- nn.Conv2D(
- in_channels=chan_in,
- out_channels=self.feat_out,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(0))))
- self.fam_cls_convs.add_sublayer('fam_cls_conv_{}_act'.format(i),
- nn.ReLU())
- self.fam_reg_convs.add_sublayer(
- 'fam_reg_conv_{}'.format(i),
- nn.Conv2D(
- in_channels=chan_in,
- out_channels=self.feat_out,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(0))))
- self.fam_reg_convs.add_sublayer('fam_reg_conv_{}_act'.format(i),
- nn.ReLU())
- self.fam_reg = nn.Conv2D(
- self.feat_out,
- 5,
- 1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(0)))
- prior_prob = 0.01
- bias_init = float(-np.log((1 - prior_prob) / prior_prob))
- self.fam_cls = nn.Conv2D(
- self.feat_out,
- self.cls_out_channels,
- 1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(bias_init)))
- if self.align_conv_type == "AlignConv":
- self.align_conv = AlignConv(self.feat_out, self.feat_out,
- self.align_conv_size)
- elif self.align_conv_type == "Conv":
- self.align_conv = nn.Conv2D(
- self.feat_out,
- self.feat_out,
- self.align_conv_size,
- padding=(self.align_conv_size - 1) // 2,
- bias_attr=ParamAttr(initializer=Constant(0)))
- elif self.align_conv_type == "DCN":
- self.align_conv_offset = nn.Conv2D(
- self.feat_out,
- 2 * self.align_conv_size**2,
- 1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(0)))
- self.align_conv = paddle.vision.ops.DeformConv2D(
- self.feat_out,
- self.feat_out,
- self.align_conv_size,
- padding=(self.align_conv_size - 1) // 2,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=False)
- self.or_conv = nn.Conv2D(
- self.feat_out,
- self.feat_out,
- kernel_size=3,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(0)))
- # ODM
- self.odm_cls_convs = nn.Sequential()
- self.odm_reg_convs = nn.Sequential()
- for i in range(self.stacked_convs):
- ch_in = self.feat_out
- # ch_in = int(self.feat_out / 8) if i == 0 else self.feat_out
- self.odm_cls_convs.add_sublayer(
- 'odm_cls_conv_{}'.format(i),
- nn.Conv2D(
- in_channels=ch_in,
- out_channels=self.feat_out,
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(0))))
- self.odm_cls_convs.add_sublayer('odm_cls_conv_{}_act'.format(i),
- nn.ReLU())
- self.odm_reg_convs.add_sublayer(
- 'odm_reg_conv_{}'.format(i),
- nn.Conv2D(
- in_channels=self.feat_out,
- out_channels=self.feat_out,
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(0))))
- self.odm_reg_convs.add_sublayer('odm_reg_conv_{}_act'.format(i),
- nn.ReLU())
- self.odm_cls = nn.Conv2D(
- self.feat_out,
- self.cls_out_channels,
- 3,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(bias_init)))
- self.odm_reg = nn.Conv2D(
- self.feat_out,
- 5,
- 3,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
- bias_attr=ParamAttr(initializer=Constant(0)))
- self.featmap_sizes = []
- self.base_anchors_list = []
- self.refine_anchor_list = []
- def forward(self, feats):
- fam_reg_branch_list = []
- fam_cls_branch_list = []
- odm_reg_branch_list = []
- odm_cls_branch_list = []
- self.featmap_sizes_list = []
- self.base_anchors_list = []
- self.refine_anchor_list = []
- for feat_idx in range(len(feats)):
- feat = feats[feat_idx]
- fam_cls_feat = self.fam_cls_convs(feat)
- fam_cls = self.fam_cls(fam_cls_feat)
- # [N, CLS, H, W] --> [N, H, W, CLS]
- fam_cls = fam_cls.transpose([0, 2, 3, 1])
- fam_cls_reshape = paddle.reshape(
- fam_cls, [fam_cls.shape[0], -1, self.cls_out_channels])
- fam_cls_branch_list.append(fam_cls_reshape)
- fam_reg_feat = self.fam_reg_convs(feat)
- fam_reg = self.fam_reg(fam_reg_feat)
- # [N, 5, H, W] --> [N, H, W, 5]
- fam_reg = fam_reg.transpose([0, 2, 3, 1])
- fam_reg_reshape = paddle.reshape(fam_reg, [fam_reg.shape[0], -1, 5])
- fam_reg_branch_list.append(fam_reg_reshape)
- # prepare anchor
- featmap_size = (paddle.shape(feat)[2], paddle.shape(feat)[3])
- self.featmap_sizes_list.append(featmap_size)
- init_anchors = self.anchor_generators[feat_idx](
- featmap_size, self.anchor_strides[feat_idx])
- init_anchors = paddle.to_tensor(init_anchors, dtype='float32')
- NA = featmap_size[0] * featmap_size[1]
- init_anchors = paddle.reshape(init_anchors, [NA, 4])
- init_anchors = self.rect2rbox(init_anchors)
- self.base_anchors_list.append(init_anchors)
- if self.training:
- refine_anchor = self.bbox_decode(fam_reg.detach(), init_anchors)
- else:
- refine_anchor = self.bbox_decode(fam_reg, init_anchors)
- self.refine_anchor_list.append(refine_anchor)
- if self.align_conv_type == 'AlignConv':
- align_feat = self.align_conv(feat,
- refine_anchor.clone(),
- featmap_size,
- self.anchor_strides[feat_idx])
- elif self.align_conv_type == 'DCN':
- align_offset = self.align_conv_offset(feat)
- align_feat = self.align_conv(feat, align_offset)
- elif self.align_conv_type == 'Conv':
- align_feat = self.align_conv(feat)
- or_feat = self.or_conv(align_feat)
- odm_reg_feat = or_feat
- odm_cls_feat = or_feat
- odm_reg_feat = self.odm_reg_convs(odm_reg_feat)
- odm_cls_feat = self.odm_cls_convs(odm_cls_feat)
- odm_cls_score = self.odm_cls(odm_cls_feat)
- # [N, CLS, H, W] --> [N, H, W, CLS]
- odm_cls_score = odm_cls_score.transpose([0, 2, 3, 1])
- odm_cls_score_shape = odm_cls_score.shape
- odm_cls_score_reshape = paddle.reshape(odm_cls_score, [
- odm_cls_score_shape[0], odm_cls_score_shape[1] *
- odm_cls_score_shape[2], self.cls_out_channels
- ])
- odm_cls_branch_list.append(odm_cls_score_reshape)
- odm_bbox_pred = self.odm_reg(odm_reg_feat)
- # [N, 5, H, W] --> [N, H, W, 5]
- odm_bbox_pred = odm_bbox_pred.transpose([0, 2, 3, 1])
- odm_bbox_pred_reshape = paddle.reshape(odm_bbox_pred, [-1, 5])
- odm_bbox_pred_reshape = paddle.unsqueeze(
- odm_bbox_pred_reshape, axis=0)
- odm_reg_branch_list.append(odm_bbox_pred_reshape)
- self.s2anet_head_out = (fam_cls_branch_list, fam_reg_branch_list,
- odm_cls_branch_list, odm_reg_branch_list)
- return self.s2anet_head_out
- def get_prediction(self, nms_pre=2000):
- refine_anchors = self.refine_anchor_list
- fam_cls_branch_list = self.s2anet_head_out[0]
- fam_reg_branch_list = self.s2anet_head_out[1]
- odm_cls_branch_list = self.s2anet_head_out[2]
- odm_reg_branch_list = self.s2anet_head_out[3]
- pred_scores, pred_bboxes = self.get_bboxes(
- odm_cls_branch_list, odm_reg_branch_list, refine_anchors, nms_pre,
- self.cls_out_channels, self.use_sigmoid_cls)
- return pred_scores, pred_bboxes
- def smooth_l1_loss(self, pred, label, delta=1.0 / 9.0):
- """
- Args:
- pred: pred score
- label: label
- delta: delta
- Returns: loss
- """
- assert pred.shape == label.shape and label.numel() > 0
- assert delta > 0
- diff = paddle.abs(pred - label)
- loss = paddle.where(diff < delta, 0.5 * diff * diff / delta,
- diff - 0.5 * delta)
- return loss
- def get_fam_loss(self, fam_target, s2anet_head_out, reg_loss_type='gwd'):
- (labels, label_weights, bbox_targets, bbox_weights, bbox_gt_bboxes,
- pos_inds, neg_inds) = fam_target
- fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list = s2anet_head_out
- fam_cls_losses = []
- fam_bbox_losses = []
- st_idx = 0
- num_total_samples = len(pos_inds) + len(
- neg_inds) if self.sampling else len(pos_inds)
- num_total_samples = max(1, num_total_samples)
- for idx, feat_size in enumerate(self.featmap_sizes_list):
- feat_anchor_num = feat_size[0] * feat_size[1]
- # step1: get data
- feat_labels = labels[st_idx:st_idx + feat_anchor_num]
- feat_label_weights = label_weights[st_idx:st_idx + feat_anchor_num]
- feat_bbox_targets = bbox_targets[st_idx:st_idx + feat_anchor_num, :]
- feat_bbox_weights = bbox_weights[st_idx:st_idx + feat_anchor_num, :]
- # step2: calc cls loss
- feat_labels = feat_labels.reshape(-1)
- feat_label_weights = feat_label_weights.reshape(-1)
- fam_cls_score = fam_cls_branch_list[idx]
- fam_cls_score = paddle.squeeze(fam_cls_score, axis=0)
- fam_cls_score1 = fam_cls_score
- feat_labels = paddle.to_tensor(feat_labels)
- feat_labels_one_hot = paddle.nn.functional.one_hot(
- feat_labels, self.cls_out_channels + 1)
- feat_labels_one_hot = feat_labels_one_hot[:, 1:]
- feat_labels_one_hot.stop_gradient = True
- num_total_samples = paddle.to_tensor(
- num_total_samples, dtype='float32', stop_gradient=True)
- fam_cls = F.sigmoid_focal_loss(
- fam_cls_score1,
- feat_labels_one_hot,
- normalizer=num_total_samples,
- reduction='none')
- feat_label_weights = feat_label_weights.reshape(
- feat_label_weights.shape[0], 1)
- feat_label_weights = np.repeat(
- feat_label_weights, self.cls_out_channels, axis=1)
- feat_label_weights = paddle.to_tensor(
- feat_label_weights, stop_gradient=True)
- fam_cls = fam_cls * feat_label_weights
- fam_cls_total = paddle.sum(fam_cls)
- fam_cls_losses.append(fam_cls_total)
- # step3: regression loss
- feat_bbox_targets = paddle.to_tensor(
- feat_bbox_targets, dtype='float32', stop_gradient=True)
- feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5])
- fam_bbox_pred = fam_reg_branch_list[idx]
- fam_bbox_pred = paddle.squeeze(fam_bbox_pred, axis=0)
- fam_bbox_pred = paddle.reshape(fam_bbox_pred, [-1, 5])
- fam_bbox = self.smooth_l1_loss(fam_bbox_pred, feat_bbox_targets)
- loss_weight = paddle.to_tensor(
- self.reg_loss_weight, dtype='float32', stop_gradient=True)
- fam_bbox = paddle.multiply(fam_bbox, loss_weight)
- feat_bbox_weights = paddle.to_tensor(
- feat_bbox_weights, stop_gradient=True)
- if reg_loss_type == 'l1':
- fam_bbox = fam_bbox * feat_bbox_weights
- fam_bbox_total = paddle.sum(fam_bbox) / num_total_samples
- elif reg_loss_type == 'iou' or reg_loss_type == 'gwd':
- fam_bbox = paddle.sum(fam_bbox, axis=-1)
- feat_bbox_weights = paddle.sum(feat_bbox_weights, axis=-1)
- try:
- from rbox_iou_ops import rbox_iou
- except Exception as e:
- print("import custom_ops error, try install rbox_iou_ops " \
- "following ppdet/ext_op/README.md", e)
- sys.stdout.flush()
- sys.exit(-1)
- # calc iou
- fam_bbox_decode = self.delta2rbox(self.base_anchors_list[idx],
- fam_bbox_pred)
- bbox_gt_bboxes = paddle.to_tensor(
- bbox_gt_bboxes,
- dtype=fam_bbox_decode.dtype,
- place=fam_bbox_decode.place)
- bbox_gt_bboxes.stop_gradient = True
- iou = rbox_iou(fam_bbox_decode, bbox_gt_bboxes)
- iou = paddle.diag(iou)
- if reg_loss_type == 'gwd':
- bbox_gt_bboxes_level = bbox_gt_bboxes[st_idx:st_idx +
- feat_anchor_num, :]
- fam_bbox_total = self.gwd_loss(fam_bbox_decode,
- bbox_gt_bboxes_level)
- fam_bbox_total = fam_bbox_total * feat_bbox_weights
- fam_bbox_total = paddle.sum(
- fam_bbox_total) / num_total_samples
- fam_bbox_losses.append(fam_bbox_total)
- st_idx += feat_anchor_num
- fam_cls_loss = paddle.add_n(fam_cls_losses)
- fam_cls_loss_weight = paddle.to_tensor(
- self.cls_loss_weight[0], dtype='float32', stop_gradient=True)
- fam_cls_loss = fam_cls_loss * fam_cls_loss_weight
- fam_reg_loss = paddle.add_n(fam_bbox_losses)
- return fam_cls_loss, fam_reg_loss
- def get_odm_loss(self, odm_target, s2anet_head_out, reg_loss_type='gwd'):
- (labels, label_weights, bbox_targets, bbox_weights, bbox_gt_bboxes,
- pos_inds, neg_inds) = odm_target
- fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list = s2anet_head_out
- odm_cls_losses = []
- odm_bbox_losses = []
- st_idx = 0
- num_total_samples = len(pos_inds) + len(
- neg_inds) if self.sampling else len(pos_inds)
- num_total_samples = max(1, num_total_samples)
- for idx, feat_size in enumerate(self.featmap_sizes_list):
- feat_anchor_num = feat_size[0] * feat_size[1]
- # step1: get data
- feat_labels = labels[st_idx:st_idx + feat_anchor_num]
- feat_label_weights = label_weights[st_idx:st_idx + feat_anchor_num]
- feat_bbox_targets = bbox_targets[st_idx:st_idx + feat_anchor_num, :]
- feat_bbox_weights = bbox_weights[st_idx:st_idx + feat_anchor_num, :]
- # step2: calc cls loss
- feat_labels = feat_labels.reshape(-1)
- feat_label_weights = feat_label_weights.reshape(-1)
- odm_cls_score = odm_cls_branch_list[idx]
- odm_cls_score = paddle.squeeze(odm_cls_score, axis=0)
- odm_cls_score1 = odm_cls_score
- feat_labels = paddle.to_tensor(feat_labels)
- feat_labels_one_hot = paddle.nn.functional.one_hot(
- feat_labels, self.cls_out_channels + 1)
- feat_labels_one_hot = feat_labels_one_hot[:, 1:]
- feat_labels_one_hot.stop_gradient = True
- num_total_samples = paddle.to_tensor(
- num_total_samples, dtype='float32', stop_gradient=True)
- odm_cls = F.sigmoid_focal_loss(
- odm_cls_score1,
- feat_labels_one_hot,
- normalizer=num_total_samples,
- reduction='none')
- feat_label_weights = feat_label_weights.reshape(
- feat_label_weights.shape[0], 1)
- feat_label_weights = np.repeat(
- feat_label_weights, self.cls_out_channels, axis=1)
- feat_label_weights = paddle.to_tensor(feat_label_weights)
- feat_label_weights.stop_gradient = True
- odm_cls = odm_cls * feat_label_weights
- odm_cls_total = paddle.sum(odm_cls)
- odm_cls_losses.append(odm_cls_total)
- # # step3: regression loss
- feat_bbox_targets = paddle.to_tensor(
- feat_bbox_targets, dtype='float32')
- feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5])
- feat_bbox_targets.stop_gradient = True
- odm_bbox_pred = odm_reg_branch_list[idx]
- odm_bbox_pred = paddle.squeeze(odm_bbox_pred, axis=0)
- odm_bbox_pred = paddle.reshape(odm_bbox_pred, [-1, 5])
- odm_bbox = self.smooth_l1_loss(odm_bbox_pred, feat_bbox_targets)
- loss_weight = paddle.to_tensor(
- self.reg_loss_weight, dtype='float32', stop_gradient=True)
- odm_bbox = paddle.multiply(odm_bbox, loss_weight)
- feat_bbox_weights = paddle.to_tensor(
- feat_bbox_weights, stop_gradient=True)
- if reg_loss_type == 'l1':
- odm_bbox = odm_bbox * feat_bbox_weights
- odm_bbox_total = paddle.sum(odm_bbox) / num_total_samples
- elif reg_loss_type == 'iou' or reg_loss_type == 'gwd':
- odm_bbox = paddle.sum(odm_bbox, axis=-1)
- feat_bbox_weights = paddle.sum(feat_bbox_weights, axis=-1)
- try:
- from rbox_iou_ops import rbox_iou
- except Exception as e:
- print("import custom_ops error, try install rbox_iou_ops " \
- "following ppdet/ext_op/README.md", e)
- sys.stdout.flush()
- sys.exit(-1)
- # calc iou
- odm_bbox_decode = self.delta2rbox(self.refine_anchor_list[idx],
- odm_bbox_pred)
- bbox_gt_bboxes = paddle.to_tensor(
- bbox_gt_bboxes,
- dtype=odm_bbox_decode.dtype,
- place=odm_bbox_decode.place)
- bbox_gt_bboxes.stop_gradient = True
- iou = rbox_iou(odm_bbox_decode, bbox_gt_bboxes)
- iou = paddle.diag(iou)
- if reg_loss_type == 'gwd':
- bbox_gt_bboxes_level = bbox_gt_bboxes[st_idx:st_idx +
- feat_anchor_num, :]
- odm_bbox_total = self.gwd_loss(odm_bbox_decode,
- bbox_gt_bboxes_level)
- odm_bbox_total = odm_bbox_total * feat_bbox_weights
- odm_bbox_total = paddle.sum(
- odm_bbox_total) / num_total_samples
- odm_bbox_losses.append(odm_bbox_total)
- st_idx += feat_anchor_num
- odm_cls_loss = paddle.add_n(odm_cls_losses)
- odm_cls_loss_weight = paddle.to_tensor(
- self.cls_loss_weight[1], dtype='float32', stop_gradient=True)
- odm_cls_loss = odm_cls_loss * odm_cls_loss_weight
- odm_reg_loss = paddle.add_n(odm_bbox_losses)
- return odm_cls_loss, odm_reg_loss
- def get_loss(self, inputs):
- # inputs: im_id image im_shape scale_factor gt_bbox gt_class is_crowd
- # compute loss
- fam_cls_loss_lst = []
- fam_reg_loss_lst = []
- odm_cls_loss_lst = []
- odm_reg_loss_lst = []
- im_shape = inputs['im_shape']
- for im_id in range(im_shape.shape[0]):
- np_im_shape = inputs['im_shape'][im_id].numpy()
- np_scale_factor = inputs['scale_factor'][im_id].numpy()
- # data_format: (xc, yc, w, h, theta)
- gt_bboxes = inputs['gt_rbox'][im_id].numpy()
- gt_labels = inputs['gt_class'][im_id].numpy()
- is_crowd = inputs['is_crowd'][im_id].numpy()
- gt_labels = gt_labels + 1
- # featmap_sizes
- anchors_list_all = np.concatenate(self.base_anchors_list)
- # get im_feat
- fam_cls_feats_list = [e[im_id] for e in self.s2anet_head_out[0]]
- fam_reg_feats_list = [e[im_id] for e in self.s2anet_head_out[1]]
- odm_cls_feats_list = [e[im_id] for e in self.s2anet_head_out[2]]
- odm_reg_feats_list = [e[im_id] for e in self.s2anet_head_out[3]]
- im_s2anet_head_out = (fam_cls_feats_list, fam_reg_feats_list,
- odm_cls_feats_list, odm_reg_feats_list)
- # FAM
- im_fam_target = self.anchor_assign(anchors_list_all, gt_bboxes,
- gt_labels, is_crowd)
- if im_fam_target is not None:
- im_fam_cls_loss, im_fam_reg_loss = self.get_fam_loss(
- im_fam_target, im_s2anet_head_out, self.reg_loss_type)
- fam_cls_loss_lst.append(im_fam_cls_loss)
- fam_reg_loss_lst.append(im_fam_reg_loss)
- # ODM
- np_refine_anchors_list = paddle.concat(
- self.refine_anchor_list).numpy()
- np_refine_anchors_list = np.concatenate(np_refine_anchors_list)
- np_refine_anchors_list = np_refine_anchors_list.reshape(-1, 5)
- im_odm_target = self.anchor_assign(np_refine_anchors_list,
- gt_bboxes, gt_labels, is_crowd)
- if im_odm_target is not None:
- im_odm_cls_loss, im_odm_reg_loss = self.get_odm_loss(
- im_odm_target, im_s2anet_head_out, self.reg_loss_type)
- odm_cls_loss_lst.append(im_odm_cls_loss)
- odm_reg_loss_lst.append(im_odm_reg_loss)
- fam_cls_loss = paddle.add_n(fam_cls_loss_lst)
- fam_reg_loss = paddle.add_n(fam_reg_loss_lst)
- odm_cls_loss = paddle.add_n(odm_cls_loss_lst)
- odm_reg_loss = paddle.add_n(odm_reg_loss_lst)
- return {
- 'fam_cls_loss': fam_cls_loss,
- 'fam_reg_loss': fam_reg_loss,
- 'odm_cls_loss': odm_cls_loss,
- 'odm_reg_loss': odm_reg_loss
- }
- def get_bboxes(self, cls_score_list, bbox_pred_list, mlvl_anchors, nms_pre,
- cls_out_channels, use_sigmoid_cls):
- assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_anchors)
- mlvl_bboxes = []
- mlvl_scores = []
- idx = 0
- for cls_score, bbox_pred, anchors in zip(cls_score_list, bbox_pred_list,
- mlvl_anchors):
- cls_score = paddle.reshape(cls_score, [-1, cls_out_channels])
- if use_sigmoid_cls:
- scores = F.sigmoid(cls_score)
- else:
- scores = F.softmax(cls_score, axis=-1)
- # bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 5)
- bbox_pred = paddle.transpose(bbox_pred, [1, 2, 0])
- bbox_pred = paddle.reshape(bbox_pred, [-1, 5])
- anchors = paddle.reshape(anchors, [-1, 5])
- if scores.shape[0] > nms_pre:
- # Get maximum scores for foreground classes.
- if use_sigmoid_cls:
- max_scores = paddle.max(scores, axis=1)
- else:
- max_scores = paddle.max(scores[:, 1:], axis=1)
- topk_val, topk_inds = paddle.topk(max_scores, nms_pre)
- anchors = paddle.gather(anchors, topk_inds)
- bbox_pred = paddle.gather(bbox_pred, topk_inds)
- scores = paddle.gather(scores, topk_inds)
- bbox_delta = paddle.reshape(bbox_pred, [-1, 5])
- bboxes = self.delta2rbox(anchors, bbox_delta)
- mlvl_bboxes.append(bboxes)
- mlvl_scores.append(scores)
- idx += 1
- mlvl_bboxes = paddle.concat(mlvl_bboxes, axis=0)
- mlvl_scores = paddle.concat(mlvl_scores)
- return mlvl_scores, mlvl_bboxes
- def rect2rbox(self, bboxes):
- """
- :param bboxes: shape (n, 4) (xmin, ymin, xmax, ymax)
- :return: dbboxes: shape (n, 5) (x_ctr, y_ctr, w, h, angle)
- """
- bboxes = paddle.reshape(bboxes, [-1, 4])
- num_boxes = paddle.shape(bboxes)[0]
- x_ctr = (bboxes[:, 2] + bboxes[:, 0]) / 2.0
- y_ctr = (bboxes[:, 3] + bboxes[:, 1]) / 2.0
- edges1 = paddle.abs(bboxes[:, 2] - bboxes[:, 0])
- edges2 = paddle.abs(bboxes[:, 3] - bboxes[:, 1])
- rbox_w = paddle.maximum(edges1, edges2)
- rbox_h = paddle.minimum(edges1, edges2)
- # set angle
- inds = edges1 < edges2
- inds = paddle.cast(inds, 'int32')
- rboxes_angle = inds * np.pi / 2.0
- rboxes = paddle.stack(
- (x_ctr, y_ctr, rbox_w, rbox_h, rboxes_angle), axis=1)
- return rboxes
- # deltas to rbox
- def delta2rbox(self, rrois, deltas, wh_ratio_clip=1e-6):
- """
- :param rrois: (cx, cy, w, h, theta)
- :param deltas: (dx, dy, dw, dh, dtheta)
- :param means: means of anchor
- :param stds: stds of anchor
- :param wh_ratio_clip: clip threshold of wh_ratio
- :return:
- """
- deltas = paddle.reshape(deltas, [-1, 5])
- rrois = paddle.reshape(rrois, [-1, 5])
- # fix dy2st bug denorm_deltas = deltas * self.stds + self.means
- denorm_deltas = paddle.add(
- paddle.multiply(deltas, self.stds), self.means)
- dx = denorm_deltas[:, 0]
- dy = denorm_deltas[:, 1]
- dw = denorm_deltas[:, 2]
- dh = denorm_deltas[:, 3]
- dangle = denorm_deltas[:, 4]
- max_ratio = np.abs(np.log(wh_ratio_clip))
- dw = paddle.clip(dw, min=-max_ratio, max=max_ratio)
- dh = paddle.clip(dh, min=-max_ratio, max=max_ratio)
- rroi_x = rrois[:, 0]
- rroi_y = rrois[:, 1]
- rroi_w = rrois[:, 2]
- rroi_h = rrois[:, 3]
- rroi_angle = rrois[:, 4]
- gx = dx * rroi_w * paddle.cos(rroi_angle) - dy * rroi_h * paddle.sin(
- rroi_angle) + rroi_x
- gy = dx * rroi_w * paddle.sin(rroi_angle) + dy * rroi_h * paddle.cos(
- rroi_angle) + rroi_y
- gw = rroi_w * dw.exp()
- gh = rroi_h * dh.exp()
- ga = np.pi * dangle + rroi_angle
- ga = (ga + np.pi / 4) % np.pi - np.pi / 4
- ga = paddle.to_tensor(ga)
- gw = paddle.to_tensor(gw, dtype='float32')
- gh = paddle.to_tensor(gh, dtype='float32')
- bboxes = paddle.stack([gx, gy, gw, gh, ga], axis=-1)
- return bboxes
- def bbox_decode(self, bbox_preds, anchors):
- """decode bbox from deltas
- Args:
- bbox_preds: [N,H,W,5]
- anchors: [H*W,5]
- return:
- bboxes: [N,H,W,5]
- """
- num_imgs, H, W, _ = bbox_preds.shape
- bbox_delta = paddle.reshape(bbox_preds, [-1, 5])
- bboxes = self.delta2rbox(anchors, bbox_delta)
- return bboxes
- def trace(self, A):
- tr = paddle.diagonal(A, axis1=-2, axis2=-1)
- tr = paddle.sum(tr, axis=-1)
- return tr
- def sqrt_newton_schulz_autograd(self, A, numIters):
- A_shape = A.shape
- batchSize = A_shape[0]
- dim = A_shape[1]
- normA = A * A
- normA = paddle.sum(normA, axis=1)
- normA = paddle.sum(normA, axis=1)
- normA = paddle.sqrt(normA)
- normA1 = normA.reshape([batchSize, 1, 1])
- Y = paddle.divide(A, paddle.expand_as(normA1, A))
- I = paddle.eye(dim, dim).reshape([1, dim, dim])
- l0 = []
- for i in range(batchSize):
- l0.append(I)
- I = paddle.concat(l0, axis=0)
- I.stop_gradient = False
- Z = paddle.eye(dim, dim).reshape([1, dim, dim])
- l1 = []
- for i in range(batchSize):
- l1.append(Z)
- Z = paddle.concat(l1, axis=0)
- Z.stop_gradient = False
- for i in range(numIters):
- T = 0.5 * (3.0 * I - Z.bmm(Y))
- Y = Y.bmm(T)
- Z = T.bmm(Z)
- sA = Y * paddle.sqrt(normA1).reshape([batchSize, 1, 1])
- sA = paddle.expand_as(sA, A)
- return sA
- def wasserstein_distance_sigma(sigma1, sigma2):
- wasserstein_distance_item2 = paddle.matmul(
- sigma1, sigma1) + paddle.matmul(
- sigma2, sigma2) - 2 * self.sqrt_newton_schulz_autograd(
- paddle.matmul(
- paddle.matmul(sigma1, paddle.matmul(sigma2, sigma2)),
- sigma1), 10)
- wasserstein_distance_item2 = self.trace(wasserstein_distance_item2)
- return wasserstein_distance_item2
- def xywhr2xyrs(self, xywhr):
- xywhr = paddle.reshape(xywhr, [-1, 5])
- xy = xywhr[:, :2]
- wh = paddle.clip(xywhr[:, 2:4], min=1e-7, max=1e7)
- r = xywhr[:, 4]
- cos_r = paddle.cos(r)
- sin_r = paddle.sin(r)
- R = paddle.stack(
- (cos_r, -sin_r, sin_r, cos_r), axis=-1).reshape([-1, 2, 2])
- S = 0.5 * paddle.nn.functional.diag_embed(wh)
- return xy, R, S
- def gwd_loss(self,
- pred,
- target,
- fun='log',
- tau=1.0,
- alpha=1.0,
- normalize=False):
- xy_p, R_p, S_p = self.xywhr2xyrs(pred)
- xy_t, R_t, S_t = self.xywhr2xyrs(target)
- xy_distance = (xy_p - xy_t).square().sum(axis=-1)
- Sigma_p = R_p.matmul(S_p.square()).matmul(R_p.transpose([0, 2, 1]))
- Sigma_t = R_t.matmul(S_t.square()).matmul(R_t.transpose([0, 2, 1]))
- whr_distance = paddle.diagonal(
- S_p, axis1=-2, axis2=-1).square().sum(axis=-1)
- whr_distance = whr_distance + paddle.diagonal(
- S_t, axis1=-2, axis2=-1).square().sum(axis=-1)
- _t = Sigma_p.matmul(Sigma_t)
- _t_tr = paddle.diagonal(_t, axis1=-2, axis2=-1).sum(axis=-1)
- _t_det_sqrt = paddle.diagonal(S_p, axis1=-2, axis2=-1).prod(axis=-1)
- _t_det_sqrt = _t_det_sqrt * paddle.diagonal(
- S_t, axis1=-2, axis2=-1).prod(axis=-1)
- whr_distance = whr_distance + (-2) * (
- (_t_tr + 2 * _t_det_sqrt).clip(0).sqrt())
- distance = (xy_distance + alpha * alpha * whr_distance).clip(0)
- if normalize:
- wh_p = pred[..., 2:4].clip(min=1e-7, max=1e7)
- wh_t = target[..., 2:4].clip(min=1e-7, max=1e7)
- scale = ((wh_p.log() + wh_t.log()).sum(dim=-1) / 4).exp()
- distance = distance / scale
- if fun == 'log':
- distance = paddle.log1p(distance)
- if tau >= 1.0:
- return 1 - 1 / (tau + distance)
- return distance
|