123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- from ppdet.core.workspace import register
- from ppdet.modeling import ops
- def _to_list(v):
- if not isinstance(v, (list, tuple)):
- return [v]
- return v
- @register
- class RoIAlign(object):
- """
- RoI Align module
- For more details, please refer to the document of roi_align in
- in https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/vision/ops.py
- Args:
- resolution (int): The output size, default 14
- spatial_scale (float): Multiplicative spatial scale factor to translate
- ROI coords from their input scale to the scale used when pooling.
- default 0.0625
- sampling_ratio (int): The number of sampling points in the interpolation
- grid, default 0
- canconical_level (int): The referring level of FPN layer with
- specified level. default 4
- canonical_size (int): The referring scale of FPN layer with
- specified scale. default 224
- start_level (int): The start level of FPN layer to extract RoI feature,
- default 0
- end_level (int): The end level of FPN layer to extract RoI feature,
- default 3
- aligned (bool): Whether to add offset to rois' coord in roi_align.
- default false
- """
- def __init__(self,
- resolution=14,
- spatial_scale=0.0625,
- sampling_ratio=0,
- canconical_level=4,
- canonical_size=224,
- start_level=0,
- end_level=3,
- aligned=False):
- super(RoIAlign, self).__init__()
- self.resolution = resolution
- self.spatial_scale = _to_list(spatial_scale)
- self.sampling_ratio = sampling_ratio
- self.canconical_level = canconical_level
- self.canonical_size = canonical_size
- self.start_level = start_level
- self.end_level = end_level
- self.aligned = aligned
- @classmethod
- def from_config(cls, cfg, input_shape):
- return {'spatial_scale': [1. / i.stride for i in input_shape]}
- def __call__(self, feats, roi, rois_num):
- roi = paddle.concat(roi) if len(roi) > 1 else roi[0]
- if len(feats) == 1:
- rois_feat = paddle.vision.ops.roi_align(
- x=feats[self.start_level],
- boxes=roi,
- boxes_num=rois_num,
- output_size=self.resolution,
- spatial_scale=self.spatial_scale[0],
- aligned=self.aligned)
- else:
- offset = 2
- k_min = self.start_level + offset
- k_max = self.end_level + offset
- rois_dist, restore_index, rois_num_dist = ops.distribute_fpn_proposals(
- roi,
- k_min,
- k_max,
- self.canconical_level,
- self.canonical_size,
- rois_num=rois_num)
- rois_feat_list = []
- for lvl in range(self.start_level, self.end_level + 1):
- roi_feat = paddle.vision.ops.roi_align(
- x=feats[lvl],
- boxes=rois_dist[lvl],
- boxes_num=rois_num_dist[lvl],
- output_size=self.resolution,
- spatial_scale=self.spatial_scale[lvl],
- sampling_ratio=self.sampling_ratio,
- aligned=self.aligned)
- rois_feat_list.append(roi_feat)
- rois_feat_shuffle = paddle.concat(rois_feat_list)
- rois_feat = paddle.gather(rois_feat_shuffle, restore_index)
- return rois_feat
|