123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- from ppdet.core.workspace import register
- from .. import layers as L
- from ..backbones.hrnet import BasicBlock
- @register
- class HrHRNetHead(nn.Layer):
- __inject__ = ['loss']
- def __init__(self, num_joints, loss='HrHRNetLoss', swahr=False, width=32):
- """
- Head for HigherHRNet network
- Args:
- num_joints (int): number of keypoints
- hrloss (object): HrHRNetLoss instance
- swahr (bool): whether to use swahr
- width (int): hrnet channel width
- """
- super(HrHRNetHead, self).__init__()
- self.loss = loss
- self.num_joints = num_joints
- num_featout1 = num_joints * 2
- num_featout2 = num_joints
- self.swahr = swahr
- self.conv1 = L.Conv2d(width, num_featout1, 1, 1, 0, bias=True)
- self.conv2 = L.Conv2d(width, num_featout2, 1, 1, 0, bias=True)
- self.deconv = nn.Sequential(
- L.ConvTranspose2d(
- num_featout1 + width, width, 4, 2, 1, 0, bias=False),
- L.BatchNorm2d(width),
- L.ReLU())
- self.blocks = nn.Sequential(*(BasicBlock(
- num_channels=width,
- num_filters=width,
- has_se=False,
- freeze_norm=False,
- name='HrHRNetHead_{}'.format(i)) for i in range(4)))
- self.interpolate = L.Upsample(2, mode='bilinear')
- self.concat = L.Concat(dim=1)
- if swahr:
- self.scalelayer0 = nn.Sequential(
- L.Conv2d(
- width, num_joints, 1, 1, 0, bias=True),
- L.BatchNorm2d(num_joints),
- L.ReLU(),
- L.Conv2d(
- num_joints,
- num_joints,
- 9,
- 1,
- 4,
- groups=num_joints,
- bias=True))
- self.scalelayer1 = nn.Sequential(
- L.Conv2d(
- width, num_joints, 1, 1, 0, bias=True),
- L.BatchNorm2d(num_joints),
- L.ReLU(),
- L.Conv2d(
- num_joints,
- num_joints,
- 9,
- 1,
- 4,
- groups=num_joints,
- bias=True))
- def forward(self, feats, targets=None):
- x1 = feats[0]
- xo1 = self.conv1(x1)
- x2 = self.blocks(self.deconv(self.concat((x1, xo1))))
- xo2 = self.conv2(x2)
- num_joints = self.num_joints
- if self.training:
- heatmap1, tagmap = paddle.split(xo1, 2, axis=1)
- if self.swahr:
- so1 = self.scalelayer0(x1)
- so2 = self.scalelayer1(x2)
- hrhrnet_outputs = ([heatmap1, so1], [xo2, so2], tagmap)
- return self.loss(hrhrnet_outputs, targets)
- else:
- hrhrnet_outputs = (heatmap1, xo2, tagmap)
- return self.loss(hrhrnet_outputs, targets)
- # averaged heatmap, upsampled tagmap
- upsampled = self.interpolate(xo1)
- avg = (upsampled[:, :num_joints] + xo2[:, :num_joints]) / 2
- return avg, upsampled[:, num_joints:]
|