123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- from paddle.nn.initializer import Normal, Constant
- from ppdet.core.workspace import register
- from ppdet.modeling.layers import ConvNormLayer
- class ScaleReg(nn.Layer):
- """
- Parameter for scaling the regression outputs.
- """
- def __init__(self):
- super(ScaleReg, self).__init__()
- self.scale_reg = self.create_parameter(
- shape=[1],
- attr=ParamAttr(initializer=Constant(value=1.)),
- dtype="float32")
- def forward(self, inputs):
- out = inputs * self.scale_reg
- return out
- @register
- class FCOSFeat(nn.Layer):
- """
- FCOSFeat of FCOS
- Args:
- feat_in (int): The channel number of input Tensor.
- feat_out (int): The channel number of output Tensor.
- num_convs (int): The convolution number of the FCOSFeat.
- norm_type (str): Normalization type, 'bn'/'sync_bn'/'gn'.
- use_dcn (bool): Whether to use dcn in tower or not.
- """
- def __init__(self,
- feat_in=256,
- feat_out=256,
- num_convs=4,
- norm_type='bn',
- use_dcn=False):
- super(FCOSFeat, self).__init__()
- self.feat_in = feat_in
- self.feat_out = feat_out
- self.num_convs = num_convs
- self.norm_type = norm_type
- self.cls_subnet_convs = []
- self.reg_subnet_convs = []
- for i in range(self.num_convs):
- in_c = feat_in if i == 0 else feat_out
- cls_conv_name = 'fcos_head_cls_tower_conv_{}'.format(i)
- cls_conv = self.add_sublayer(
- cls_conv_name,
- ConvNormLayer(
- ch_in=in_c,
- ch_out=feat_out,
- filter_size=3,
- stride=1,
- norm_type=norm_type,
- use_dcn=use_dcn,
- bias_on=True,
- lr_scale=2.))
- self.cls_subnet_convs.append(cls_conv)
- reg_conv_name = 'fcos_head_reg_tower_conv_{}'.format(i)
- reg_conv = self.add_sublayer(
- reg_conv_name,
- ConvNormLayer(
- ch_in=in_c,
- ch_out=feat_out,
- filter_size=3,
- stride=1,
- norm_type=norm_type,
- use_dcn=use_dcn,
- bias_on=True,
- lr_scale=2.))
- self.reg_subnet_convs.append(reg_conv)
- def forward(self, fpn_feat):
- cls_feat = fpn_feat
- reg_feat = fpn_feat
- for i in range(self.num_convs):
- cls_feat = F.relu(self.cls_subnet_convs[i](cls_feat))
- reg_feat = F.relu(self.reg_subnet_convs[i](reg_feat))
- return cls_feat, reg_feat
- @register
- class FCOSHead(nn.Layer):
- """
- FCOSHead
- Args:
- fcos_feat (object): Instance of 'FCOSFeat'
- num_classes (int): Number of classes
- fpn_stride (list): The stride of each FPN Layer
- prior_prob (float): Used to set the bias init for the class prediction layer
- fcos_loss (object): Instance of 'FCOSLoss'
- norm_reg_targets (bool): Normalization the regression target if true
- centerness_on_reg (bool): The prediction of centerness on regression or clssification branch
- """
- __inject__ = ['fcos_feat', 'fcos_loss']
- __shared__ = ['num_classes']
- def __init__(self,
- fcos_feat,
- num_classes=80,
- fpn_stride=[8, 16, 32, 64, 128],
- prior_prob=0.01,
- fcos_loss='FCOSLoss',
- norm_reg_targets=True,
- centerness_on_reg=True):
- super(FCOSHead, self).__init__()
- self.fcos_feat = fcos_feat
- self.num_classes = num_classes
- self.fpn_stride = fpn_stride
- self.prior_prob = prior_prob
- self.fcos_loss = fcos_loss
- self.norm_reg_targets = norm_reg_targets
- self.centerness_on_reg = centerness_on_reg
- conv_cls_name = "fcos_head_cls"
- bias_init_value = -math.log((1 - self.prior_prob) / self.prior_prob)
- self.fcos_head_cls = self.add_sublayer(
- conv_cls_name,
- nn.Conv2D(
- in_channels=256,
- out_channels=self.num_classes,
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(
- mean=0., std=0.01)),
- bias_attr=ParamAttr(
- initializer=Constant(value=bias_init_value))))
- conv_reg_name = "fcos_head_reg"
- self.fcos_head_reg = self.add_sublayer(
- conv_reg_name,
- nn.Conv2D(
- in_channels=256,
- out_channels=4,
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(
- mean=0., std=0.01)),
- bias_attr=ParamAttr(initializer=Constant(value=0))))
- conv_centerness_name = "fcos_head_centerness"
- self.fcos_head_centerness = self.add_sublayer(
- conv_centerness_name,
- nn.Conv2D(
- in_channels=256,
- out_channels=1,
- kernel_size=3,
- stride=1,
- padding=1,
- weight_attr=ParamAttr(initializer=Normal(
- mean=0., std=0.01)),
- bias_attr=ParamAttr(initializer=Constant(value=0))))
- self.scales_regs = []
- for i in range(len(self.fpn_stride)):
- lvl = int(math.log(int(self.fpn_stride[i]), 2))
- feat_name = 'p{}_feat'.format(lvl)
- scale_reg = self.add_sublayer(feat_name, ScaleReg())
- self.scales_regs.append(scale_reg)
- def _compute_locations_by_level(self, fpn_stride, feature):
- """
- Compute locations of anchor points of each FPN layer
- Args:
- fpn_stride (int): The stride of current FPN feature map
- feature (Tensor): Tensor of current FPN feature map
- Return:
- Anchor points locations of current FPN feature map
- """
- shape_fm = paddle.shape(feature)
- shape_fm.stop_gradient = True
- h, w = shape_fm[2], shape_fm[3]
- shift_x = paddle.arange(0, w * fpn_stride, fpn_stride)
- shift_y = paddle.arange(0, h * fpn_stride, fpn_stride)
- shift_x = paddle.unsqueeze(shift_x, axis=0)
- shift_y = paddle.unsqueeze(shift_y, axis=1)
- shift_x = paddle.expand(shift_x, shape=[h, w])
- shift_y = paddle.expand(shift_y, shape=[h, w])
- shift_x.stop_gradient = True
- shift_y.stop_gradient = True
- shift_x = paddle.reshape(shift_x, shape=[-1])
- shift_y = paddle.reshape(shift_y, shape=[-1])
- location = paddle.stack(
- [shift_x, shift_y], axis=-1) + float(fpn_stride) / 2
- location.stop_gradient = True
- return location
- def forward(self, fpn_feats, is_training):
- assert len(fpn_feats) == len(
- self.fpn_stride
- ), "The size of fpn_feats is not equal to size of fpn_stride"
- cls_logits_list = []
- bboxes_reg_list = []
- centerness_list = []
- for scale_reg, fpn_stride, fpn_feat in zip(self.scales_regs,
- self.fpn_stride, fpn_feats):
- fcos_cls_feat, fcos_reg_feat = self.fcos_feat(fpn_feat)
- cls_logits = self.fcos_head_cls(fcos_cls_feat)
- bbox_reg = scale_reg(self.fcos_head_reg(fcos_reg_feat))
- if self.centerness_on_reg:
- centerness = self.fcos_head_centerness(fcos_reg_feat)
- else:
- centerness = self.fcos_head_centerness(fcos_cls_feat)
- if self.norm_reg_targets:
- bbox_reg = F.relu(bbox_reg)
- if not is_training:
- bbox_reg = bbox_reg * fpn_stride
- else:
- bbox_reg = paddle.exp(bbox_reg)
- cls_logits_list.append(cls_logits)
- bboxes_reg_list.append(bbox_reg)
- centerness_list.append(centerness)
- if not is_training:
- locations_list = []
- for fpn_stride, feature in zip(self.fpn_stride, fpn_feats):
- location = self._compute_locations_by_level(fpn_stride, feature)
- locations_list.append(location)
- return locations_list, cls_logits_list, bboxes_reg_list, centerness_list
- else:
- return cls_logits_list, bboxes_reg_list, centerness_list
- def get_loss(self, fcos_head_outs, tag_labels, tag_bboxes, tag_centerness):
- cls_logits, bboxes_reg, centerness = fcos_head_outs
- return self.fcos_loss(cls_logits, bboxes_reg, centerness, tag_labels,
- tag_bboxes, tag_centerness)
|