123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.nn.initializer import Constant, Uniform
- from ppdet.core.workspace import register
- from ppdet.modeling.losses import CTFocalLoss, GIoULoss
- class ConvLayer(nn.Layer):
- def __init__(self,
- ch_in,
- ch_out,
- kernel_size,
- stride=1,
- padding=0,
- dilation=1,
- groups=1,
- bias=False):
- super(ConvLayer, self).__init__()
- bias_attr = False
- fan_in = ch_in * kernel_size**2
- bound = 1 / math.sqrt(fan_in)
- param_attr = paddle.ParamAttr(initializer=Uniform(-bound, bound))
- if bias:
- bias_attr = paddle.ParamAttr(initializer=Constant(0.))
- self.conv = nn.Conv2D(
- in_channels=ch_in,
- out_channels=ch_out,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- dilation=dilation,
- groups=groups,
- weight_attr=param_attr,
- bias_attr=bias_attr)
- def forward(self, inputs):
- out = self.conv(inputs)
- return out
- @register
- class CenterNetHead(nn.Layer):
- """
- Args:
- in_channels (int): the channel number of input to CenterNetHead.
- num_classes (int): the number of classes, 80 (COCO dataset) by default.
- head_planes (int): the channel number in all head, 256 by default.
- heatmap_weight (float): the weight of heatmap loss, 1 by default.
- regress_ltrb (bool): whether to regress left/top/right/bottom or
- width/height for a box, true by default
- size_weight (float): the weight of box size loss, 0.1 by default.
- size_loss (): the type of size regression loss, 'L1 loss' by default.
- offset_weight (float): the weight of center offset loss, 1 by default.
- iou_weight (float): the weight of iou head loss, 0 by default.
- """
- __shared__ = ['num_classes']
- def __init__(self,
- in_channels,
- num_classes=80,
- head_planes=256,
- heatmap_weight=1,
- regress_ltrb=True,
- size_weight=0.1,
- size_loss='L1',
- offset_weight=1,
- iou_weight=0):
- super(CenterNetHead, self).__init__()
- self.regress_ltrb = regress_ltrb
- self.weights = {
- 'heatmap': heatmap_weight,
- 'size': size_weight,
- 'offset': offset_weight,
- 'iou': iou_weight
- }
- # heatmap head
- self.heatmap = nn.Sequential(
- ConvLayer(
- in_channels, head_planes, kernel_size=3, padding=1, bias=True),
- nn.ReLU(),
- ConvLayer(
- head_planes,
- num_classes,
- kernel_size=1,
- stride=1,
- padding=0,
- bias=True))
- with paddle.no_grad():
- self.heatmap[2].conv.bias[:] = -2.19
- # size(ltrb or wh) head
- self.size = nn.Sequential(
- ConvLayer(
- in_channels, head_planes, kernel_size=3, padding=1, bias=True),
- nn.ReLU(),
- ConvLayer(
- head_planes,
- 4 if regress_ltrb else 2,
- kernel_size=1,
- stride=1,
- padding=0,
- bias=True))
- self.size_loss = size_loss
- # offset head
- self.offset = nn.Sequential(
- ConvLayer(
- in_channels, head_planes, kernel_size=3, padding=1, bias=True),
- nn.ReLU(),
- ConvLayer(
- head_planes, 2, kernel_size=1, stride=1, padding=0, bias=True))
- # iou head (optinal)
- if iou_weight > 0:
- self.iou = nn.Sequential(
- ConvLayer(
- in_channels,
- head_planes,
- kernel_size=3,
- padding=1,
- bias=True),
- nn.ReLU(),
- ConvLayer(
- head_planes,
- 4 if regress_ltrb else 2,
- kernel_size=1,
- stride=1,
- padding=0,
- bias=True))
- @classmethod
- def from_config(cls, cfg, input_shape):
- if isinstance(input_shape, (list, tuple)):
- input_shape = input_shape[0]
- return {'in_channels': input_shape.channels}
- def forward(self, feat, inputs):
- heatmap = self.heatmap(feat)
- size = self.size(feat)
- offset = self.offset(feat)
- iou = self.iou(feat) if hasattr(self, 'iou_weight') else None
- if self.training:
- loss = self.get_loss(
- inputs, self.weights, heatmap, size, offset, iou=iou)
- return loss
- else:
- heatmap = F.sigmoid(heatmap)
- head_outs = {'heatmap': heatmap, 'size': size, 'offset': offset}
- if iou is not None:
- head_outs.update({'iou': iou})
- return head_outs
- def get_loss(self, inputs, weights, heatmap, size, offset, iou=None):
- # heatmap head loss: CTFocalLoss
- heatmap_target = inputs['heatmap']
- heatmap = paddle.clip(F.sigmoid(heatmap), 1e-4, 1 - 1e-4)
- ctfocal_loss = CTFocalLoss()
- heatmap_loss = ctfocal_loss(heatmap, heatmap_target)
- # size head loss: L1 loss or GIoU loss
- index = inputs['index']
- mask = inputs['index_mask']
- size = paddle.transpose(size, perm=[0, 2, 3, 1])
- size_n, size_h, size_w, size_c = size.shape
- size = paddle.reshape(size, shape=[size_n, -1, size_c])
- index = paddle.unsqueeze(index, 2)
- batch_inds = list()
- for i in range(size_n):
- batch_ind = paddle.full(
- shape=[1, index.shape[1], 1], fill_value=i, dtype='int64')
- batch_inds.append(batch_ind)
- batch_inds = paddle.concat(batch_inds, axis=0)
- index = paddle.concat(x=[batch_inds, index], axis=2)
- pos_size = paddle.gather_nd(size, index=index)
- mask = paddle.unsqueeze(mask, axis=2)
- size_mask = paddle.expand_as(mask, pos_size)
- size_mask = paddle.cast(size_mask, dtype=pos_size.dtype)
- pos_num = size_mask.sum()
- size_mask.stop_gradient = True
- if self.size_loss == 'L1':
- if self.regress_ltrb:
- size_target = inputs['size']
- # shape: [bs, max_per_img, 4]
- else:
- if inputs['size'].shape[-1] == 2:
- # inputs['size'] is wh, and regress as wh
- # shape: [bs, max_per_img, 2]
- size_target = inputs['size']
- else:
- # inputs['size'] is ltrb, but regress as wh
- # shape: [bs, max_per_img, 4]
- size_target = inputs['size'][:, :, 0:2] + inputs['size'][:, :, 2:]
- size_target.stop_gradient = True
- size_loss = F.l1_loss(
- pos_size * size_mask, size_target * size_mask, reduction='sum')
- size_loss = size_loss / (pos_num + 1e-4)
- elif self.size_loss == 'giou':
- size_target = inputs['bbox_xys']
- size_target.stop_gradient = True
- centers_x = (size_target[:, :, 0:1] + size_target[:, :, 2:3]) / 2.0
- centers_y = (size_target[:, :, 1:2] + size_target[:, :, 3:4]) / 2.0
- x1 = centers_x - pos_size[:, :, 0:1]
- y1 = centers_y - pos_size[:, :, 1:2]
- x2 = centers_x + pos_size[:, :, 2:3]
- y2 = centers_y + pos_size[:, :, 3:4]
- pred_boxes = paddle.concat([x1, y1, x2, y2], axis=-1)
- giou_loss = GIoULoss(reduction='sum')
- size_loss = giou_loss(
- pred_boxes * size_mask,
- size_target * size_mask,
- iou_weight=size_mask,
- loc_reweight=None)
- size_loss = size_loss / (pos_num + 1e-4)
- # offset head loss: L1 loss
- offset_target = inputs['offset']
- offset = paddle.transpose(offset, perm=[0, 2, 3, 1])
- offset_n, offset_h, offset_w, offset_c = offset.shape
- offset = paddle.reshape(offset, shape=[offset_n, -1, offset_c])
- pos_offset = paddle.gather_nd(offset, index=index)
- offset_mask = paddle.expand_as(mask, pos_offset)
- offset_mask = paddle.cast(offset_mask, dtype=pos_offset.dtype)
- pos_num = offset_mask.sum()
- offset_mask.stop_gradient = True
- offset_target.stop_gradient = True
- offset_loss = F.l1_loss(
- pos_offset * offset_mask,
- offset_target * offset_mask,
- reduction='sum')
- offset_loss = offset_loss / (pos_num + 1e-4)
- # iou head loss: GIoU loss
- if iou is not None:
- iou = paddle.transpose(iou, perm=[0, 2, 3, 1])
- iou_n, iou_h, iou_w, iou_c = iou.shape
- iou = paddle.reshape(iou, shape=[iou_n, -1, iou_c])
- pos_iou = paddle.gather_nd(iou, index=index)
- iou_mask = paddle.expand_as(mask, pos_iou)
- iou_mask = paddle.cast(iou_mask, dtype=pos_iou.dtype)
- pos_num = iou_mask.sum()
- iou_mask.stop_gradient = True
- gt_bbox_xys = inputs['bbox_xys']
- gt_bbox_xys.stop_gradient = True
- centers_x = (gt_bbox_xys[:, :, 0:1] + gt_bbox_xys[:, :, 2:3]) / 2.0
- centers_y = (gt_bbox_xys[:, :, 1:2] + gt_bbox_xys[:, :, 3:4]) / 2.0
- x1 = centers_x - pos_size[:, :, 0:1]
- y1 = centers_y - pos_size[:, :, 1:2]
- x2 = centers_x + pos_size[:, :, 2:3]
- y2 = centers_y + pos_size[:, :, 3:4]
- pred_boxes = paddle.concat([x1, y1, x2, y2], axis=-1)
- giou_loss = GIoULoss(reduction='sum')
- iou_loss = giou_loss(
- pred_boxes * iou_mask,
- gt_bbox_xys * iou_mask,
- iou_weight=iou_mask,
- loc_reweight=None)
- iou_loss = iou_loss / (pos_num + 1e-4)
- losses = {
- 'heatmap_loss': heatmap_loss,
- 'size_loss': size_loss,
- 'offset_loss': offset_loss,
- }
- det_loss = weights['heatmap'] * heatmap_loss + weights[
- 'size'] * size_loss + weights['offset'] * offset_loss
- if iou is not None:
- losses.update({'iou_loss': iou_loss})
- det_loss = det_loss + weights['iou'] * iou_loss
- losses.update({'det_loss': det_loss})
- return losses
|