123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from numbers import Integral
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from ppdet.core.workspace import register, serializable
- from ..shape_spec import ShapeSpec
- from .resnet import ConvNormLayer
- __all__ = ['Res2Net', 'Res2NetC5']
- Res2Net_cfg = {
- 50: [3, 4, 6, 3],
- 101: [3, 4, 23, 3],
- 152: [3, 8, 36, 3],
- 200: [3, 12, 48, 3]
- }
- class BottleNeck(nn.Layer):
- def __init__(self,
- ch_in,
- ch_out,
- stride,
- shortcut,
- width,
- scales=4,
- variant='b',
- groups=1,
- lr=1.0,
- norm_type='bn',
- norm_decay=0.,
- freeze_norm=True,
- dcn_v2=False):
- super(BottleNeck, self).__init__()
- self.shortcut = shortcut
- self.scales = scales
- self.stride = stride
- if not shortcut:
- if variant == 'd' and stride == 2:
- self.branch1 = nn.Sequential()
- self.branch1.add_sublayer(
- 'pool',
- nn.AvgPool2D(
- kernel_size=2, stride=2, padding=0, ceil_mode=True))
- self.branch1.add_sublayer(
- 'conv',
- ConvNormLayer(
- ch_in=ch_in,
- ch_out=ch_out,
- filter_size=1,
- stride=1,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- lr=lr))
- else:
- self.branch1 = ConvNormLayer(
- ch_in=ch_in,
- ch_out=ch_out,
- filter_size=1,
- stride=stride,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- lr=lr)
- self.branch2a = ConvNormLayer(
- ch_in=ch_in,
- ch_out=width * scales,
- filter_size=1,
- stride=stride if variant == 'a' else 1,
- groups=1,
- act='relu',
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- lr=lr)
- self.branch2b = nn.LayerList([
- ConvNormLayer(
- ch_in=width,
- ch_out=width,
- filter_size=3,
- stride=1 if variant == 'a' else stride,
- groups=groups,
- act='relu',
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- lr=lr,
- dcn_v2=dcn_v2) for _ in range(self.scales - 1)
- ])
- self.branch2c = ConvNormLayer(
- ch_in=width * scales,
- ch_out=ch_out,
- filter_size=1,
- stride=1,
- groups=1,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- lr=lr)
- def forward(self, inputs):
- out = self.branch2a(inputs)
- feature_split = paddle.split(out, self.scales, 1)
- out_split = []
- for i in range(self.scales - 1):
- if i == 0 or self.stride == 2:
- out_split.append(self.branch2b[i](feature_split[i]))
- else:
- out_split.append(self.branch2b[i](paddle.add(feature_split[i],
- out_split[-1])))
- if self.stride == 1:
- out_split.append(feature_split[-1])
- else:
- out_split.append(F.avg_pool2d(feature_split[-1], 3, self.stride, 1))
- out = self.branch2c(paddle.concat(out_split, 1))
- if self.shortcut:
- short = inputs
- else:
- short = self.branch1(inputs)
- out = paddle.add(out, short)
- out = F.relu(out)
- return out
- class Blocks(nn.Layer):
- def __init__(self,
- ch_in,
- ch_out,
- count,
- stage_num,
- width,
- scales=4,
- variant='b',
- groups=1,
- lr=1.0,
- norm_type='bn',
- norm_decay=0.,
- freeze_norm=True,
- dcn_v2=False):
- super(Blocks, self).__init__()
- self.blocks = nn.Sequential()
- for i in range(count):
- self.blocks.add_sublayer(
- str(i),
- BottleNeck(
- ch_in=ch_in if i == 0 else ch_out,
- ch_out=ch_out,
- stride=2 if i == 0 and stage_num != 2 else 1,
- shortcut=False if i == 0 else True,
- width=width * (2**(stage_num - 2)),
- scales=scales,
- variant=variant,
- groups=groups,
- lr=lr,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- dcn_v2=dcn_v2))
- def forward(self, inputs):
- return self.blocks(inputs)
- @register
- @serializable
- class Res2Net(nn.Layer):
- """
- Res2Net, see https://arxiv.org/abs/1904.01169
- Args:
- depth (int): Res2Net depth, should be 50, 101, 152, 200.
- width (int): Res2Net width
- scales (int): Res2Net scale
- variant (str): Res2Net variant, supports 'a', 'b', 'c', 'd' currently
- lr_mult_list (list): learning rate ratio of different resnet stages(2,3,4,5),
- lower learning rate ratio is need for pretrained model
- got using distillation(default as [1.0, 1.0, 1.0, 1.0]).
- groups (int): The groups number of the Conv Layer.
- norm_type (str): normalization type, 'bn' or 'sync_bn'
- norm_decay (float): weight decay for normalization layer weights
- freeze_norm (bool): freeze normalization layers
- freeze_at (int): freeze the backbone at which stage
- return_idx (list): index of stages whose feature maps are returned,
- index 0 stands for res2
- dcn_v2_stages (list): index of stages who select deformable conv v2
- num_stages (int): number of stages created
- """
- __shared__ = ['norm_type']
- def __init__(self,
- depth=50,
- width=26,
- scales=4,
- variant='b',
- lr_mult_list=[1.0, 1.0, 1.0, 1.0],
- groups=1,
- norm_type='bn',
- norm_decay=0.,
- freeze_norm=True,
- freeze_at=0,
- return_idx=[0, 1, 2, 3],
- dcn_v2_stages=[-1],
- num_stages=4):
- super(Res2Net, self).__init__()
- self._model_type = 'Res2Net' if groups == 1 else 'Res2NeXt'
- assert depth in [50, 101, 152, 200], \
- "depth {} not in [50, 101, 152, 200]"
- assert variant in ['a', 'b', 'c', 'd'], "invalid Res2Net variant"
- assert num_stages >= 1 and num_stages <= 4
- self.depth = depth
- self.variant = variant
- self.norm_type = norm_type
- self.norm_decay = norm_decay
- self.freeze_norm = freeze_norm
- self.freeze_at = freeze_at
- if isinstance(return_idx, Integral):
- return_idx = [return_idx]
- assert max(return_idx) < num_stages, \
- 'the maximum return index must smaller than num_stages, ' \
- 'but received maximum return index is {} and num_stages ' \
- 'is {}'.format(max(return_idx), num_stages)
- self.return_idx = return_idx
- self.num_stages = num_stages
- assert len(lr_mult_list) == 4, \
- "lr_mult_list length must be 4 but got {}".format(len(lr_mult_list))
- if isinstance(dcn_v2_stages, Integral):
- dcn_v2_stages = [dcn_v2_stages]
- assert max(dcn_v2_stages) < num_stages
- self.dcn_v2_stages = dcn_v2_stages
- block_nums = Res2Net_cfg[depth]
- # C1 stage
- if self.variant in ['c', 'd']:
- conv_def = [
- [3, 32, 3, 2, "conv1_1"],
- [32, 32, 3, 1, "conv1_2"],
- [32, 64, 3, 1, "conv1_3"],
- ]
- else:
- conv_def = [[3, 64, 7, 2, "conv1"]]
- self.res1 = nn.Sequential()
- for (c_in, c_out, k, s, _name) in conv_def:
- self.res1.add_sublayer(
- _name,
- ConvNormLayer(
- ch_in=c_in,
- ch_out=c_out,
- filter_size=k,
- stride=s,
- groups=1,
- act='relu',
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- lr=1.0))
- self._in_channels = [64, 256, 512, 1024]
- self._out_channels = [256, 512, 1024, 2048]
- self._out_strides = [4, 8, 16, 32]
- # C2-C5 stages
- self.res_layers = []
- for i in range(num_stages):
- lr_mult = lr_mult_list[i]
- stage_num = i + 2
- self.res_layers.append(
- self.add_sublayer(
- "res{}".format(stage_num),
- Blocks(
- self._in_channels[i],
- self._out_channels[i],
- count=block_nums[i],
- stage_num=stage_num,
- width=width,
- scales=scales,
- groups=groups,
- lr=lr_mult,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- dcn_v2=(i in self.dcn_v2_stages))))
- @property
- def out_shape(self):
- return [
- ShapeSpec(
- channels=self._out_channels[i], stride=self._out_strides[i])
- for i in self.return_idx
- ]
- def forward(self, inputs):
- x = inputs['image']
- res1 = self.res1(x)
- x = F.max_pool2d(res1, kernel_size=3, stride=2, padding=1)
- outs = []
- for idx, stage in enumerate(self.res_layers):
- x = stage(x)
- if idx == self.freeze_at:
- x.stop_gradient = True
- if idx in self.return_idx:
- outs.append(x)
- return outs
- @register
- class Res2NetC5(nn.Layer):
- def __init__(self, depth=50, width=26, scales=4, variant='b'):
- super(Res2NetC5, self).__init__()
- feat_in, feat_out = [1024, 2048]
- self.res5 = Blocks(
- feat_in,
- feat_out,
- count=3,
- stage_num=5,
- width=width,
- scales=scales,
- variant=variant)
- self.feat_out = feat_out
- @property
- def out_shape(self):
- return [ShapeSpec(
- channels=self.feat_out,
- stride=32, )]
- def forward(self, roi_feat, stage=0):
- y = self.res5(roi_feat)
- return y
|