123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- from paddle.regularizer import L2Decay
- from ppdet.core.workspace import register, serializable
- from numbers import Integral
- from ..shape_spec import ShapeSpec
- __all__ = ['MobileNetV3']
- def make_divisible(v, divisor=8, min_value=None):
- if min_value is None:
- min_value = divisor
- new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
- if new_v < 0.9 * v:
- new_v += divisor
- return new_v
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- in_c,
- out_c,
- filter_size,
- stride,
- padding,
- num_groups=1,
- act=None,
- lr_mult=1.,
- conv_decay=0.,
- norm_type='bn',
- norm_decay=0.,
- freeze_norm=False,
- name=""):
- super(ConvBNLayer, self).__init__()
- self.act = act
- self.conv = nn.Conv2D(
- in_channels=in_c,
- out_channels=out_c,
- kernel_size=filter_size,
- stride=stride,
- padding=padding,
- groups=num_groups,
- weight_attr=ParamAttr(
- learning_rate=lr_mult, regularizer=L2Decay(conv_decay)),
- bias_attr=False)
- norm_lr = 0. if freeze_norm else lr_mult
- param_attr = ParamAttr(
- learning_rate=norm_lr,
- regularizer=L2Decay(norm_decay),
- trainable=False if freeze_norm else True)
- bias_attr = ParamAttr(
- learning_rate=norm_lr,
- regularizer=L2Decay(norm_decay),
- trainable=False if freeze_norm else True)
- global_stats = True if freeze_norm else None
- if norm_type in ['sync_bn', 'bn']:
- self.bn = nn.BatchNorm2D(
- out_c,
- weight_attr=param_attr,
- bias_attr=bias_attr,
- use_global_stats=global_stats)
- norm_params = self.bn.parameters()
- if freeze_norm:
- for param in norm_params:
- param.stop_gradient = True
- def forward(self, x):
- x = self.conv(x)
- x = self.bn(x)
- if self.act is not None:
- if self.act == "relu":
- x = F.relu(x)
- elif self.act == "relu6":
- x = F.relu6(x)
- elif self.act == "hard_swish":
- x = F.hardswish(x)
- else:
- raise NotImplementedError(
- "The activation function is selected incorrectly.")
- return x
- class ResidualUnit(nn.Layer):
- def __init__(self,
- in_c,
- mid_c,
- out_c,
- filter_size,
- stride,
- use_se,
- lr_mult,
- conv_decay=0.,
- norm_type='bn',
- norm_decay=0.,
- freeze_norm=False,
- act=None,
- return_list=False,
- name=''):
- super(ResidualUnit, self).__init__()
- self.if_shortcut = stride == 1 and in_c == out_c
- self.use_se = use_se
- self.return_list = return_list
- self.expand_conv = ConvBNLayer(
- in_c=in_c,
- out_c=mid_c,
- filter_size=1,
- stride=1,
- padding=0,
- act=act,
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name=name + "_expand")
- self.bottleneck_conv = ConvBNLayer(
- in_c=mid_c,
- out_c=mid_c,
- filter_size=filter_size,
- stride=stride,
- padding=int((filter_size - 1) // 2),
- num_groups=mid_c,
- act=act,
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name=name + "_depthwise")
- if self.use_se:
- self.mid_se = SEModule(
- mid_c, lr_mult, conv_decay, name=name + "_se")
- self.linear_conv = ConvBNLayer(
- in_c=mid_c,
- out_c=out_c,
- filter_size=1,
- stride=1,
- padding=0,
- act=None,
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name=name + "_linear")
- def forward(self, inputs):
- y = self.expand_conv(inputs)
- x = self.bottleneck_conv(y)
- if self.use_se:
- x = self.mid_se(x)
- x = self.linear_conv(x)
- if self.if_shortcut:
- x = paddle.add(inputs, x)
- if self.return_list:
- return [y, x]
- else:
- return x
- class SEModule(nn.Layer):
- def __init__(self, channel, lr_mult, conv_decay, reduction=4, name=""):
- super(SEModule, self).__init__()
- self.avg_pool = nn.AdaptiveAvgPool2D(1)
- mid_channels = int(channel // reduction)
- self.conv1 = nn.Conv2D(
- in_channels=channel,
- out_channels=mid_channels,
- kernel_size=1,
- stride=1,
- padding=0,
- weight_attr=ParamAttr(
- learning_rate=lr_mult, regularizer=L2Decay(conv_decay)),
- bias_attr=ParamAttr(
- learning_rate=lr_mult, regularizer=L2Decay(conv_decay)))
- self.conv2 = nn.Conv2D(
- in_channels=mid_channels,
- out_channels=channel,
- kernel_size=1,
- stride=1,
- padding=0,
- weight_attr=ParamAttr(
- learning_rate=lr_mult, regularizer=L2Decay(conv_decay)),
- bias_attr=ParamAttr(
- learning_rate=lr_mult, regularizer=L2Decay(conv_decay)))
- def forward(self, inputs):
- outputs = self.avg_pool(inputs)
- outputs = self.conv1(outputs)
- outputs = F.relu(outputs)
- outputs = self.conv2(outputs)
- outputs = F.hardsigmoid(outputs, slope=0.2, offset=0.5)
- return paddle.multiply(x=inputs, y=outputs)
- class ExtraBlockDW(nn.Layer):
- def __init__(self,
- in_c,
- ch_1,
- ch_2,
- stride,
- lr_mult,
- conv_decay=0.,
- norm_type='bn',
- norm_decay=0.,
- freeze_norm=False,
- name=None):
- super(ExtraBlockDW, self).__init__()
- self.pointwise_conv = ConvBNLayer(
- in_c=in_c,
- out_c=ch_1,
- filter_size=1,
- stride=1,
- padding='SAME',
- act='relu6',
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name=name + "_extra1")
- self.depthwise_conv = ConvBNLayer(
- in_c=ch_1,
- out_c=ch_2,
- filter_size=3,
- stride=stride,
- padding='SAME',
- num_groups=int(ch_1),
- act='relu6',
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name=name + "_extra2_dw")
- self.normal_conv = ConvBNLayer(
- in_c=ch_2,
- out_c=ch_2,
- filter_size=1,
- stride=1,
- padding='SAME',
- act='relu6',
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name=name + "_extra2_sep")
- def forward(self, inputs):
- x = self.pointwise_conv(inputs)
- x = self.depthwise_conv(x)
- x = self.normal_conv(x)
- return x
- @register
- @serializable
- class MobileNetV3(nn.Layer):
- __shared__ = ['norm_type']
- def __init__(
- self,
- scale=1.0,
- model_name="large",
- feature_maps=[6, 12, 15],
- with_extra_blocks=False,
- extra_block_filters=[[256, 512], [128, 256], [128, 256], [64, 128]],
- lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
- conv_decay=0.0,
- multiplier=1.0,
- norm_type='bn',
- norm_decay=0.0,
- freeze_norm=False):
- super(MobileNetV3, self).__init__()
- if isinstance(feature_maps, Integral):
- feature_maps = [feature_maps]
- if norm_type == 'sync_bn' and freeze_norm:
- raise ValueError(
- "The norm_type should not be sync_bn when freeze_norm is True")
- self.feature_maps = feature_maps
- self.with_extra_blocks = with_extra_blocks
- self.extra_block_filters = extra_block_filters
- inplanes = 16
- if model_name == "large":
- self.cfg = [
- # k, exp, c, se, nl, s,
- [3, 16, 16, False, "relu", 1],
- [3, 64, 24, False, "relu", 2],
- [3, 72, 24, False, "relu", 1],
- [5, 72, 40, True, "relu", 2], # RCNN output
- [5, 120, 40, True, "relu", 1],
- [5, 120, 40, True, "relu", 1], # YOLOv3 output
- [3, 240, 80, False, "hard_swish", 2], # RCNN output
- [3, 200, 80, False, "hard_swish", 1],
- [3, 184, 80, False, "hard_swish", 1],
- [3, 184, 80, False, "hard_swish", 1],
- [3, 480, 112, True, "hard_swish", 1],
- [3, 672, 112, True, "hard_swish", 1], # YOLOv3 output
- [5, 672, 160, True, "hard_swish", 2], # SSD/SSDLite/RCNN output
- [5, 960, 160, True, "hard_swish", 1],
- [5, 960, 160, True, "hard_swish", 1], # YOLOv3 output
- ]
- elif model_name == "small":
- self.cfg = [
- # k, exp, c, se, nl, s,
- [3, 16, 16, True, "relu", 2],
- [3, 72, 24, False, "relu", 2], # RCNN output
- [3, 88, 24, False, "relu", 1], # YOLOv3 output
- [5, 96, 40, True, "hard_swish", 2], # RCNN output
- [5, 240, 40, True, "hard_swish", 1],
- [5, 240, 40, True, "hard_swish", 1],
- [5, 120, 48, True, "hard_swish", 1],
- [5, 144, 48, True, "hard_swish", 1], # YOLOv3 output
- [5, 288, 96, True, "hard_swish", 2], # SSD/SSDLite/RCNN output
- [5, 576, 96, True, "hard_swish", 1],
- [5, 576, 96, True, "hard_swish", 1], # YOLOv3 output
- ]
- else:
- raise NotImplementedError(
- "mode[{}_model] is not implemented!".format(model_name))
- if multiplier != 1.0:
- self.cfg[-3][2] = int(self.cfg[-3][2] * multiplier)
- self.cfg[-2][1] = int(self.cfg[-2][1] * multiplier)
- self.cfg[-2][2] = int(self.cfg[-2][2] * multiplier)
- self.cfg[-1][1] = int(self.cfg[-1][1] * multiplier)
- self.cfg[-1][2] = int(self.cfg[-1][2] * multiplier)
- self.conv1 = ConvBNLayer(
- in_c=3,
- out_c=make_divisible(inplanes * scale),
- filter_size=3,
- stride=2,
- padding=1,
- num_groups=1,
- act="hard_swish",
- lr_mult=lr_mult_list[0],
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name="conv1")
- self._out_channels = []
- self.block_list = []
- i = 0
- inplanes = make_divisible(inplanes * scale)
- for (k, exp, c, se, nl, s) in self.cfg:
- lr_idx = min(i // 3, len(lr_mult_list) - 1)
- lr_mult = lr_mult_list[lr_idx]
- # for SSD/SSDLite, first head input is after ResidualUnit expand_conv
- return_list = self.with_extra_blocks and i + 2 in self.feature_maps
- block = self.add_sublayer(
- "conv" + str(i + 2),
- sublayer=ResidualUnit(
- in_c=inplanes,
- mid_c=make_divisible(scale * exp),
- out_c=make_divisible(scale * c),
- filter_size=k,
- stride=s,
- use_se=se,
- act=nl,
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- return_list=return_list,
- name="conv" + str(i + 2)))
- self.block_list.append(block)
- inplanes = make_divisible(scale * c)
- i += 1
- self._update_out_channels(
- make_divisible(scale * exp)
- if return_list else inplanes, i + 1, feature_maps)
- if self.with_extra_blocks:
- self.extra_block_list = []
- extra_out_c = make_divisible(scale * self.cfg[-1][1])
- lr_idx = min(i // 3, len(lr_mult_list) - 1)
- lr_mult = lr_mult_list[lr_idx]
- conv_extra = self.add_sublayer(
- "conv" + str(i + 2),
- sublayer=ConvBNLayer(
- in_c=inplanes,
- out_c=extra_out_c,
- filter_size=1,
- stride=1,
- padding=0,
- num_groups=1,
- act="hard_swish",
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name="conv" + str(i + 2)))
- self.extra_block_list.append(conv_extra)
- i += 1
- self._update_out_channels(extra_out_c, i + 1, feature_maps)
- for j, block_filter in enumerate(self.extra_block_filters):
- in_c = extra_out_c if j == 0 else self.extra_block_filters[j -
- 1][1]
- conv_extra = self.add_sublayer(
- "conv" + str(i + 2),
- sublayer=ExtraBlockDW(
- in_c,
- block_filter[0],
- block_filter[1],
- stride=2,
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name='conv' + str(i + 2)))
- self.extra_block_list.append(conv_extra)
- i += 1
- self._update_out_channels(block_filter[1], i + 1, feature_maps)
- def _update_out_channels(self, channel, feature_idx, feature_maps):
- if feature_idx in feature_maps:
- self._out_channels.append(channel)
- def forward(self, inputs):
- x = self.conv1(inputs['image'])
- outs = []
- for idx, block in enumerate(self.block_list):
- x = block(x)
- if idx + 2 in self.feature_maps:
- if isinstance(x, list):
- outs.append(x[0])
- x = x[1]
- else:
- outs.append(x)
- if not self.with_extra_blocks:
- return outs
- for i, block in enumerate(self.extra_block_list):
- idx = i + len(self.block_list)
- x = block(x)
- if idx + 2 in self.feature_maps:
- outs.append(x)
- return outs
- @property
- def out_shape(self):
- return [ShapeSpec(channels=c) for c in self._out_channels]
|