123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- from paddle.regularizer import L2Decay
- from paddle.nn.initializer import KaimingNormal
- from ppdet.core.workspace import register, serializable
- from numbers import Integral
- from ..shape_spec import ShapeSpec
- __all__ = ['MobileNet']
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride,
- padding,
- num_groups=1,
- act='relu',
- conv_lr=1.,
- conv_decay=0.,
- norm_decay=0.,
- norm_type='bn',
- name=None):
- super(ConvBNLayer, self).__init__()
- self.act = act
- self._conv = nn.Conv2D(
- in_channels,
- out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- groups=num_groups,
- weight_attr=ParamAttr(
- learning_rate=conv_lr,
- initializer=KaimingNormal(),
- regularizer=L2Decay(conv_decay)),
- bias_attr=False)
- param_attr = ParamAttr(regularizer=L2Decay(norm_decay))
- bias_attr = ParamAttr(regularizer=L2Decay(norm_decay))
- if norm_type in ['sync_bn', 'bn']:
- self._batch_norm = nn.BatchNorm2D(
- out_channels, weight_attr=param_attr, bias_attr=bias_attr)
- def forward(self, x):
- x = self._conv(x)
- x = self._batch_norm(x)
- if self.act == "relu":
- x = F.relu(x)
- elif self.act == "relu6":
- x = F.relu6(x)
- return x
- class DepthwiseSeparable(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels1,
- out_channels2,
- num_groups,
- stride,
- scale,
- conv_lr=1.,
- conv_decay=0.,
- norm_decay=0.,
- norm_type='bn',
- name=None):
- super(DepthwiseSeparable, self).__init__()
- self._depthwise_conv = ConvBNLayer(
- in_channels,
- int(out_channels1 * scale),
- kernel_size=3,
- stride=stride,
- padding=1,
- num_groups=int(num_groups * scale),
- conv_lr=conv_lr,
- conv_decay=conv_decay,
- norm_decay=norm_decay,
- norm_type=norm_type,
- name=name + "_dw")
- self._pointwise_conv = ConvBNLayer(
- int(out_channels1 * scale),
- int(out_channels2 * scale),
- kernel_size=1,
- stride=1,
- padding=0,
- conv_lr=conv_lr,
- conv_decay=conv_decay,
- norm_decay=norm_decay,
- norm_type=norm_type,
- name=name + "_sep")
- def forward(self, x):
- x = self._depthwise_conv(x)
- x = self._pointwise_conv(x)
- return x
- class ExtraBlock(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels1,
- out_channels2,
- num_groups=1,
- stride=2,
- conv_lr=1.,
- conv_decay=0.,
- norm_decay=0.,
- norm_type='bn',
- name=None):
- super(ExtraBlock, self).__init__()
- self.pointwise_conv = ConvBNLayer(
- in_channels,
- int(out_channels1),
- kernel_size=1,
- stride=1,
- padding=0,
- num_groups=int(num_groups),
- act='relu6',
- conv_lr=conv_lr,
- conv_decay=conv_decay,
- norm_decay=norm_decay,
- norm_type=norm_type,
- name=name + "_extra1")
- self.normal_conv = ConvBNLayer(
- int(out_channels1),
- int(out_channels2),
- kernel_size=3,
- stride=stride,
- padding=1,
- num_groups=int(num_groups),
- act='relu6',
- conv_lr=conv_lr,
- conv_decay=conv_decay,
- norm_decay=norm_decay,
- norm_type=norm_type,
- name=name + "_extra2")
- def forward(self, x):
- x = self.pointwise_conv(x)
- x = self.normal_conv(x)
- return x
- @register
- @serializable
- class MobileNet(nn.Layer):
- __shared__ = ['norm_type']
- def __init__(self,
- norm_type='bn',
- norm_decay=0.,
- conv_decay=0.,
- scale=1,
- conv_learning_rate=1.0,
- feature_maps=[4, 6, 13],
- with_extra_blocks=False,
- extra_block_filters=[[256, 512], [128, 256], [128, 256],
- [64, 128]]):
- super(MobileNet, self).__init__()
- if isinstance(feature_maps, Integral):
- feature_maps = [feature_maps]
- self.feature_maps = feature_maps
- self.with_extra_blocks = with_extra_blocks
- self.extra_block_filters = extra_block_filters
- self._out_channels = []
- self.conv1 = ConvBNLayer(
- in_channels=3,
- out_channels=int(32 * scale),
- kernel_size=3,
- stride=2,
- padding=1,
- conv_lr=conv_learning_rate,
- conv_decay=conv_decay,
- norm_decay=norm_decay,
- norm_type=norm_type,
- name="conv1")
- self.dwsl = []
- dws21 = self.add_sublayer(
- "conv2_1",
- sublayer=DepthwiseSeparable(
- in_channels=int(32 * scale),
- out_channels1=32,
- out_channels2=64,
- num_groups=32,
- stride=1,
- scale=scale,
- conv_lr=conv_learning_rate,
- conv_decay=conv_decay,
- norm_decay=norm_decay,
- norm_type=norm_type,
- name="conv2_1"))
- self.dwsl.append(dws21)
- self._update_out_channels(int(64 * scale), len(self.dwsl), feature_maps)
- dws22 = self.add_sublayer(
- "conv2_2",
- sublayer=DepthwiseSeparable(
- in_channels=int(64 * scale),
- out_channels1=64,
- out_channels2=128,
- num_groups=64,
- stride=2,
- scale=scale,
- conv_lr=conv_learning_rate,
- conv_decay=conv_decay,
- norm_decay=norm_decay,
- norm_type=norm_type,
- name="conv2_2"))
- self.dwsl.append(dws22)
- self._update_out_channels(int(128 * scale), len(self.dwsl), feature_maps)
- # 1/4
- dws31 = self.add_sublayer(
- "conv3_1",
- sublayer=DepthwiseSeparable(
- in_channels=int(128 * scale),
- out_channels1=128,
- out_channels2=128,
- num_groups=128,
- stride=1,
- scale=scale,
- conv_lr=conv_learning_rate,
- conv_decay=conv_decay,
- norm_decay=norm_decay,
- norm_type=norm_type,
- name="conv3_1"))
- self.dwsl.append(dws31)
- self._update_out_channels(int(128 * scale), len(self.dwsl), feature_maps)
- dws32 = self.add_sublayer(
- "conv3_2",
- sublayer=DepthwiseSeparable(
- in_channels=int(128 * scale),
- out_channels1=128,
- out_channels2=256,
- num_groups=128,
- stride=2,
- scale=scale,
- conv_lr=conv_learning_rate,
- conv_decay=conv_decay,
- norm_decay=norm_decay,
- norm_type=norm_type,
- name="conv3_2"))
- self.dwsl.append(dws32)
- self._update_out_channels(int(256 * scale), len(self.dwsl), feature_maps)
- # 1/8
- dws41 = self.add_sublayer(
- "conv4_1",
- sublayer=DepthwiseSeparable(
- in_channels=int(256 * scale),
- out_channels1=256,
- out_channels2=256,
- num_groups=256,
- stride=1,
- scale=scale,
- conv_lr=conv_learning_rate,
- conv_decay=conv_decay,
- norm_decay=norm_decay,
- norm_type=norm_type,
- name="conv4_1"))
- self.dwsl.append(dws41)
- self._update_out_channels(int(256 * scale), len(self.dwsl), feature_maps)
- dws42 = self.add_sublayer(
- "conv4_2",
- sublayer=DepthwiseSeparable(
- in_channels=int(256 * scale),
- out_channels1=256,
- out_channels2=512,
- num_groups=256,
- stride=2,
- scale=scale,
- conv_lr=conv_learning_rate,
- conv_decay=conv_decay,
- norm_decay=norm_decay,
- norm_type=norm_type,
- name="conv4_2"))
- self.dwsl.append(dws42)
- self._update_out_channels(int(512 * scale), len(self.dwsl), feature_maps)
- # 1/16
- for i in range(5):
- tmp = self.add_sublayer(
- "conv5_" + str(i + 1),
- sublayer=DepthwiseSeparable(
- in_channels=int(512 * scale),
- out_channels1=512,
- out_channels2=512,
- num_groups=512,
- stride=1,
- scale=scale,
- conv_lr=conv_learning_rate,
- conv_decay=conv_decay,
- norm_decay=norm_decay,
- norm_type=norm_type,
- name="conv5_" + str(i + 1)))
- self.dwsl.append(tmp)
- self._update_out_channels(int(512 * scale), len(self.dwsl), feature_maps)
- dws56 = self.add_sublayer(
- "conv5_6",
- sublayer=DepthwiseSeparable(
- in_channels=int(512 * scale),
- out_channels1=512,
- out_channels2=1024,
- num_groups=512,
- stride=2,
- scale=scale,
- conv_lr=conv_learning_rate,
- conv_decay=conv_decay,
- norm_decay=norm_decay,
- norm_type=norm_type,
- name="conv5_6"))
- self.dwsl.append(dws56)
- self._update_out_channels(int(1024 * scale), len(self.dwsl), feature_maps)
- # 1/32
- dws6 = self.add_sublayer(
- "conv6",
- sublayer=DepthwiseSeparable(
- in_channels=int(1024 * scale),
- out_channels1=1024,
- out_channels2=1024,
- num_groups=1024,
- stride=1,
- scale=scale,
- conv_lr=conv_learning_rate,
- conv_decay=conv_decay,
- norm_decay=norm_decay,
- norm_type=norm_type,
- name="conv6"))
- self.dwsl.append(dws6)
- self._update_out_channels(int(1024 * scale), len(self.dwsl), feature_maps)
- if self.with_extra_blocks:
- self.extra_blocks = []
- for i, block_filter in enumerate(self.extra_block_filters):
- in_c = 1024 if i == 0 else self.extra_block_filters[i - 1][1]
- conv_extra = self.add_sublayer(
- "conv7_" + str(i + 1),
- sublayer=ExtraBlock(
- in_c,
- block_filter[0],
- block_filter[1],
- conv_lr=conv_learning_rate,
- conv_decay=conv_decay,
- norm_decay=norm_decay,
- norm_type=norm_type,
- name="conv7_" + str(i + 1)))
- self.extra_blocks.append(conv_extra)
- self._update_out_channels(
- block_filter[1],
- len(self.dwsl) + len(self.extra_blocks), feature_maps)
- def _update_out_channels(self, channel, feature_idx, feature_maps):
- if feature_idx in feature_maps:
- self._out_channels.append(channel)
- def forward(self, inputs):
- outs = []
- y = self.conv1(inputs['image'])
- for i, block in enumerate(self.dwsl):
- y = block(y)
- if i + 1 in self.feature_maps:
- outs.append(y)
- if not self.with_extra_blocks:
- return outs
- y = outs[-1]
- for i, block in enumerate(self.extra_blocks):
- idx = i + len(self.dwsl)
- y = block(y)
- if idx + 1 in self.feature_maps:
- outs.append(y)
- return outs
- @property
- def out_shape(self):
- return [ShapeSpec(channels=c) for c in self._out_channels]
|