123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is based on
- https://github.com/HRNet/Lite-HRNet/blob/hrnet/models/backbones/litehrnet.py
- """
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from numbers import Integral
- from paddle import ParamAttr
- from paddle.regularizer import L2Decay
- from paddle.nn.initializer import Normal, Constant
- from ppdet.core.workspace import register
- from ppdet.modeling.shape_spec import ShapeSpec
- from ppdet.modeling.ops import channel_shuffle
- from .. import layers as L
- __all__ = ['LiteHRNet']
- class ConvNormLayer(nn.Layer):
- def __init__(self,
- ch_in,
- ch_out,
- filter_size,
- stride=1,
- groups=1,
- norm_type=None,
- norm_groups=32,
- norm_decay=0.,
- freeze_norm=False,
- act=None):
- super(ConvNormLayer, self).__init__()
- self.act = act
- norm_lr = 0. if freeze_norm else 1.
- if norm_type is not None:
- assert norm_type in ['bn', 'sync_bn', 'gn'], \
- "norm_type should be one of ['bn', 'sync_bn', 'gn'], but got {}".format(norm_type)
- param_attr = ParamAttr(
- initializer=Constant(1.0),
- learning_rate=norm_lr,
- regularizer=L2Decay(norm_decay), )
- bias_attr = ParamAttr(
- learning_rate=norm_lr, regularizer=L2Decay(norm_decay))
- global_stats = True if freeze_norm else None
- if norm_type in ['bn', 'sync_bn']:
- self.norm = nn.BatchNorm2D(
- ch_out,
- weight_attr=param_attr,
- bias_attr=bias_attr,
- use_global_stats=global_stats, )
- elif norm_type == 'gn':
- self.norm = nn.GroupNorm(
- num_groups=norm_groups,
- num_channels=ch_out,
- weight_attr=param_attr,
- bias_attr=bias_attr)
- norm_params = self.norm.parameters()
- if freeze_norm:
- for param in norm_params:
- param.stop_gradient = True
- conv_bias_attr = False
- else:
- conv_bias_attr = True
- self.norm = None
- self.conv = nn.Conv2D(
- in_channels=ch_in,
- out_channels=ch_out,
- kernel_size=filter_size,
- stride=stride,
- padding=(filter_size - 1) // 2,
- groups=groups,
- weight_attr=ParamAttr(initializer=Normal(
- mean=0., std=0.001)),
- bias_attr=conv_bias_attr)
- def forward(self, inputs):
- out = self.conv(inputs)
- if self.norm is not None:
- out = self.norm(out)
- if self.act == 'relu':
- out = F.relu(out)
- elif self.act == 'sigmoid':
- out = F.sigmoid(out)
- return out
- class DepthWiseSeparableConvNormLayer(nn.Layer):
- def __init__(self,
- ch_in,
- ch_out,
- filter_size,
- stride=1,
- dw_norm_type=None,
- pw_norm_type=None,
- norm_decay=0.,
- freeze_norm=False,
- dw_act=None,
- pw_act=None):
- super(DepthWiseSeparableConvNormLayer, self).__init__()
- self.depthwise_conv = ConvNormLayer(
- ch_in=ch_in,
- ch_out=ch_in,
- filter_size=filter_size,
- stride=stride,
- groups=ch_in,
- norm_type=dw_norm_type,
- act=dw_act,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm, )
- self.pointwise_conv = ConvNormLayer(
- ch_in=ch_in,
- ch_out=ch_out,
- filter_size=1,
- stride=1,
- norm_type=pw_norm_type,
- act=pw_act,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm, )
- def forward(self, x):
- x = self.depthwise_conv(x)
- x = self.pointwise_conv(x)
- return x
- class CrossResolutionWeightingModule(nn.Layer):
- def __init__(self,
- channels,
- ratio=16,
- norm_type='bn',
- freeze_norm=False,
- norm_decay=0.):
- super(CrossResolutionWeightingModule, self).__init__()
- self.channels = channels
- total_channel = sum(channels)
- self.conv1 = ConvNormLayer(
- ch_in=total_channel,
- ch_out=total_channel // ratio,
- filter_size=1,
- stride=1,
- norm_type=norm_type,
- act='relu',
- freeze_norm=freeze_norm,
- norm_decay=norm_decay)
- self.conv2 = ConvNormLayer(
- ch_in=total_channel // ratio,
- ch_out=total_channel,
- filter_size=1,
- stride=1,
- norm_type=norm_type,
- act='sigmoid',
- freeze_norm=freeze_norm,
- norm_decay=norm_decay)
- def forward(self, x):
- mini_size = x[-1].shape[-2:]
- out = [F.adaptive_avg_pool2d(s, mini_size) for s in x[:-1]] + [x[-1]]
- out = paddle.concat(out, 1)
- out = self.conv1(out)
- out = self.conv2(out)
- out = paddle.split(out, self.channels, 1)
- out = [
- s * F.interpolate(
- a, s.shape[-2:], mode='nearest') for s, a in zip(x, out)
- ]
- return out
- class SpatialWeightingModule(nn.Layer):
- def __init__(self, in_channel, ratio=16, freeze_norm=False, norm_decay=0.):
- super(SpatialWeightingModule, self).__init__()
- self.global_avgpooling = nn.AdaptiveAvgPool2D(1)
- self.conv1 = ConvNormLayer(
- ch_in=in_channel,
- ch_out=in_channel // ratio,
- filter_size=1,
- stride=1,
- act='relu',
- freeze_norm=freeze_norm,
- norm_decay=norm_decay)
- self.conv2 = ConvNormLayer(
- ch_in=in_channel // ratio,
- ch_out=in_channel,
- filter_size=1,
- stride=1,
- act='sigmoid',
- freeze_norm=freeze_norm,
- norm_decay=norm_decay)
- def forward(self, x):
- out = self.global_avgpooling(x)
- out = self.conv1(out)
- out = self.conv2(out)
- return x * out
- class ConditionalChannelWeightingBlock(nn.Layer):
- def __init__(self,
- in_channels,
- stride,
- reduce_ratio,
- norm_type='bn',
- freeze_norm=False,
- norm_decay=0.):
- super(ConditionalChannelWeightingBlock, self).__init__()
- assert stride in [1, 2]
- branch_channels = [channel // 2 for channel in in_channels]
- self.cross_resolution_weighting = CrossResolutionWeightingModule(
- branch_channels,
- ratio=reduce_ratio,
- norm_type=norm_type,
- freeze_norm=freeze_norm,
- norm_decay=norm_decay)
- self.depthwise_convs = nn.LayerList([
- ConvNormLayer(
- channel,
- channel,
- filter_size=3,
- stride=stride,
- groups=channel,
- norm_type=norm_type,
- freeze_norm=freeze_norm,
- norm_decay=norm_decay) for channel in branch_channels
- ])
- self.spatial_weighting = nn.LayerList([
- SpatialWeightingModule(
- channel,
- ratio=4,
- freeze_norm=freeze_norm,
- norm_decay=norm_decay) for channel in branch_channels
- ])
- def forward(self, x):
- x = [s.chunk(2, axis=1) for s in x]
- x1 = [s[0] for s in x]
- x2 = [s[1] for s in x]
- x2 = self.cross_resolution_weighting(x2)
- x2 = [dw(s) for s, dw in zip(x2, self.depthwise_convs)]
- x2 = [sw(s) for s, sw in zip(x2, self.spatial_weighting)]
- out = [paddle.concat([s1, s2], axis=1) for s1, s2 in zip(x1, x2)]
- out = [channel_shuffle(s, groups=2) for s in out]
- return out
- class ShuffleUnit(nn.Layer):
- def __init__(self,
- in_channel,
- out_channel,
- stride,
- norm_type='bn',
- freeze_norm=False,
- norm_decay=0.):
- super(ShuffleUnit, self).__init__()
- branch_channel = out_channel // 2
- self.stride = stride
- if self.stride == 1:
- assert in_channel == branch_channel * 2, \
- "when stride=1, in_channel {} should equal to branch_channel*2 {}".format(in_channel, branch_channel * 2)
- if stride > 1:
- self.branch1 = nn.Sequential(
- ConvNormLayer(
- ch_in=in_channel,
- ch_out=in_channel,
- filter_size=3,
- stride=self.stride,
- groups=in_channel,
- norm_type=norm_type,
- freeze_norm=freeze_norm,
- norm_decay=norm_decay),
- ConvNormLayer(
- ch_in=in_channel,
- ch_out=branch_channel,
- filter_size=1,
- stride=1,
- norm_type=norm_type,
- act='relu',
- freeze_norm=freeze_norm,
- norm_decay=norm_decay), )
- self.branch2 = nn.Sequential(
- ConvNormLayer(
- ch_in=branch_channel if stride == 1 else in_channel,
- ch_out=branch_channel,
- filter_size=1,
- stride=1,
- norm_type=norm_type,
- act='relu',
- freeze_norm=freeze_norm,
- norm_decay=norm_decay),
- ConvNormLayer(
- ch_in=branch_channel,
- ch_out=branch_channel,
- filter_size=3,
- stride=self.stride,
- groups=branch_channel,
- norm_type=norm_type,
- freeze_norm=freeze_norm,
- norm_decay=norm_decay),
- ConvNormLayer(
- ch_in=branch_channel,
- ch_out=branch_channel,
- filter_size=1,
- stride=1,
- norm_type=norm_type,
- act='relu',
- freeze_norm=freeze_norm,
- norm_decay=norm_decay), )
- def forward(self, x):
- if self.stride > 1:
- x1 = self.branch1(x)
- x2 = self.branch2(x)
- else:
- x1, x2 = x.chunk(2, axis=1)
- x2 = self.branch2(x2)
- out = paddle.concat([x1, x2], axis=1)
- out = channel_shuffle(out, groups=2)
- return out
- class IterativeHead(nn.Layer):
- def __init__(self,
- in_channels,
- norm_type='bn',
- freeze_norm=False,
- norm_decay=0.):
- super(IterativeHead, self).__init__()
- num_branches = len(in_channels)
- self.in_channels = in_channels[::-1]
- projects = []
- for i in range(num_branches):
- if i != num_branches - 1:
- projects.append(
- DepthWiseSeparableConvNormLayer(
- ch_in=self.in_channels[i],
- ch_out=self.in_channels[i + 1],
- filter_size=3,
- stride=1,
- dw_act=None,
- pw_act='relu',
- dw_norm_type=norm_type,
- pw_norm_type=norm_type,
- freeze_norm=freeze_norm,
- norm_decay=norm_decay))
- else:
- projects.append(
- DepthWiseSeparableConvNormLayer(
- ch_in=self.in_channels[i],
- ch_out=self.in_channels[i],
- filter_size=3,
- stride=1,
- dw_act=None,
- pw_act='relu',
- dw_norm_type=norm_type,
- pw_norm_type=norm_type,
- freeze_norm=freeze_norm,
- norm_decay=norm_decay))
- self.projects = nn.LayerList(projects)
- def forward(self, x):
- x = x[::-1]
- y = []
- last_x = None
- for i, s in enumerate(x):
- if last_x is not None:
- last_x = F.interpolate(
- last_x,
- size=s.shape[-2:],
- mode='bilinear',
- align_corners=True)
- s = s + last_x
- s = self.projects[i](s)
- y.append(s)
- last_x = s
- return y[::-1]
- class Stem(nn.Layer):
- def __init__(self,
- in_channel,
- stem_channel,
- out_channel,
- expand_ratio,
- norm_type='bn',
- freeze_norm=False,
- norm_decay=0.):
- super(Stem, self).__init__()
- self.conv1 = ConvNormLayer(
- in_channel,
- stem_channel,
- filter_size=3,
- stride=2,
- norm_type=norm_type,
- act='relu',
- freeze_norm=freeze_norm,
- norm_decay=norm_decay)
- mid_channel = int(round(stem_channel * expand_ratio))
- branch_channel = stem_channel // 2
- if stem_channel == out_channel:
- inc_channel = out_channel - branch_channel
- else:
- inc_channel = out_channel - stem_channel
- self.branch1 = nn.Sequential(
- ConvNormLayer(
- ch_in=branch_channel,
- ch_out=branch_channel,
- filter_size=3,
- stride=2,
- groups=branch_channel,
- norm_type=norm_type,
- freeze_norm=freeze_norm,
- norm_decay=norm_decay),
- ConvNormLayer(
- ch_in=branch_channel,
- ch_out=inc_channel,
- filter_size=1,
- stride=1,
- norm_type=norm_type,
- act='relu',
- freeze_norm=freeze_norm,
- norm_decay=norm_decay), )
- self.expand_conv = ConvNormLayer(
- ch_in=branch_channel,
- ch_out=mid_channel,
- filter_size=1,
- stride=1,
- norm_type=norm_type,
- act='relu',
- freeze_norm=freeze_norm,
- norm_decay=norm_decay)
- self.depthwise_conv = ConvNormLayer(
- ch_in=mid_channel,
- ch_out=mid_channel,
- filter_size=3,
- stride=2,
- groups=mid_channel,
- norm_type=norm_type,
- freeze_norm=freeze_norm,
- norm_decay=norm_decay)
- self.linear_conv = ConvNormLayer(
- ch_in=mid_channel,
- ch_out=branch_channel
- if stem_channel == out_channel else stem_channel,
- filter_size=1,
- stride=1,
- norm_type=norm_type,
- act='relu',
- freeze_norm=freeze_norm,
- norm_decay=norm_decay)
- def forward(self, x):
- x = self.conv1(x)
- x1, x2 = x.chunk(2, axis=1)
- x1 = self.branch1(x1)
- x2 = self.expand_conv(x2)
- x2 = self.depthwise_conv(x2)
- x2 = self.linear_conv(x2)
- out = paddle.concat([x1, x2], axis=1)
- out = channel_shuffle(out, groups=2)
- return out
- class LiteHRNetModule(nn.Layer):
- def __init__(self,
- num_branches,
- num_blocks,
- in_channels,
- reduce_ratio,
- module_type,
- multiscale_output=False,
- with_fuse=True,
- norm_type='bn',
- freeze_norm=False,
- norm_decay=0.):
- super(LiteHRNetModule, self).__init__()
- assert num_branches == len(in_channels),\
- "num_branches {} should equal to num_in_channels {}".format(num_branches, len(in_channels))
- assert module_type in [
- 'LITE', 'NAIVE'
- ], "module_type should be one of ['LITE', 'NAIVE']"
- self.num_branches = num_branches
- self.in_channels = in_channels
- self.multiscale_output = multiscale_output
- self.with_fuse = with_fuse
- self.norm_type = 'bn'
- self.module_type = module_type
- if self.module_type == 'LITE':
- self.layers = self._make_weighting_blocks(
- num_blocks,
- reduce_ratio,
- freeze_norm=freeze_norm,
- norm_decay=norm_decay)
- elif self.module_type == 'NAIVE':
- self.layers = self._make_naive_branches(
- num_branches,
- num_blocks,
- freeze_norm=freeze_norm,
- norm_decay=norm_decay)
- if self.with_fuse:
- self.fuse_layers = self._make_fuse_layers(
- freeze_norm=freeze_norm, norm_decay=norm_decay)
- self.relu = nn.ReLU()
- def _make_weighting_blocks(self,
- num_blocks,
- reduce_ratio,
- stride=1,
- freeze_norm=False,
- norm_decay=0.):
- layers = []
- for i in range(num_blocks):
- layers.append(
- ConditionalChannelWeightingBlock(
- self.in_channels,
- stride=stride,
- reduce_ratio=reduce_ratio,
- norm_type=self.norm_type,
- freeze_norm=freeze_norm,
- norm_decay=norm_decay))
- return nn.Sequential(*layers)
- def _make_naive_branches(self,
- num_branches,
- num_blocks,
- freeze_norm=False,
- norm_decay=0.):
- branches = []
- for branch_idx in range(num_branches):
- layers = []
- for i in range(num_blocks):
- layers.append(
- ShuffleUnit(
- self.in_channels[branch_idx],
- self.in_channels[branch_idx],
- stride=1,
- norm_type=self.norm_type,
- freeze_norm=freeze_norm,
- norm_decay=norm_decay))
- branches.append(nn.Sequential(*layers))
- return nn.LayerList(branches)
- def _make_fuse_layers(self, freeze_norm=False, norm_decay=0.):
- if self.num_branches == 1:
- return None
- fuse_layers = []
- num_out_branches = self.num_branches if self.multiscale_output else 1
- for i in range(num_out_branches):
- fuse_layer = []
- for j in range(self.num_branches):
- if j > i:
- fuse_layer.append(
- nn.Sequential(
- L.Conv2d(
- self.in_channels[j],
- self.in_channels[i],
- kernel_size=1,
- stride=1,
- padding=0,
- bias=False, ),
- nn.BatchNorm2D(self.in_channels[i]),
- nn.Upsample(
- scale_factor=2**(j - i), mode='nearest')))
- elif j == i:
- fuse_layer.append(None)
- else:
- conv_downsamples = []
- for k in range(i - j):
- if k == i - j - 1:
- conv_downsamples.append(
- nn.Sequential(
- L.Conv2d(
- self.in_channels[j],
- self.in_channels[j],
- kernel_size=3,
- stride=2,
- padding=1,
- groups=self.in_channels[j],
- bias=False, ),
- nn.BatchNorm2D(self.in_channels[j]),
- L.Conv2d(
- self.in_channels[j],
- self.in_channels[i],
- kernel_size=1,
- stride=1,
- padding=0,
- bias=False, ),
- nn.BatchNorm2D(self.in_channels[i])))
- else:
- conv_downsamples.append(
- nn.Sequential(
- L.Conv2d(
- self.in_channels[j],
- self.in_channels[j],
- kernel_size=3,
- stride=2,
- padding=1,
- groups=self.in_channels[j],
- bias=False, ),
- nn.BatchNorm2D(self.in_channels[j]),
- L.Conv2d(
- self.in_channels[j],
- self.in_channels[j],
- kernel_size=1,
- stride=1,
- padding=0,
- bias=False, ),
- nn.BatchNorm2D(self.in_channels[j]),
- nn.ReLU()))
- fuse_layer.append(nn.Sequential(*conv_downsamples))
- fuse_layers.append(nn.LayerList(fuse_layer))
- return nn.LayerList(fuse_layers)
- def forward(self, x):
- if self.num_branches == 1:
- return [self.layers[0](x[0])]
- if self.module_type == 'LITE':
- out = self.layers(x)
- elif self.module_type == 'NAIVE':
- for i in range(self.num_branches):
- x[i] = self.layers[i](x[i])
- out = x
- if self.with_fuse:
- out_fuse = []
- for i in range(len(self.fuse_layers)):
- y = out[0] if i == 0 else self.fuse_layers[i][0](out[0])
- for j in range(self.num_branches):
- if j == 0:
- y += y
- elif i == j:
- y += out[j]
- else:
- y += self.fuse_layers[i][j](out[j])
- if i == 0:
- out[i] = y
- out_fuse.append(self.relu(y))
- out = out_fuse
- elif not self.multiscale_output:
- out = [out[0]]
- return out
- @register
- class LiteHRNet(nn.Layer):
- """
- @inproceedings{Yulitehrnet21,
- title={Lite-HRNet: A Lightweight High-Resolution Network},
- author={Yu, Changqian and Xiao, Bin and Gao, Changxin and Yuan, Lu and Zhang, Lei and Sang, Nong and Wang, Jingdong},
- booktitle={CVPR},year={2021}
- }
- Args:
- network_type (str): the network_type should be one of ["lite_18", "lite_30", "naive", "wider_naive"],
- "naive": Simply combining the shuffle block in ShuffleNet and the highresolution design pattern in HRNet.
- "wider_naive": Naive network with wider channels in each block.
- "lite_18": Lite-HRNet-18, which replaces the pointwise convolution in a shuffle block by conditional channel weighting.
- "lite_30": Lite-HRNet-30, with more blocks compared with Lite-HRNet-18.
- freeze_at (int): the stage to freeze
- freeze_norm (bool): whether to freeze norm in HRNet
- norm_decay (float): weight decay for normalization layer weights
- return_idx (List): the stage to return
- """
- def __init__(self,
- network_type,
- freeze_at=0,
- freeze_norm=True,
- norm_decay=0.,
- return_idx=[0, 1, 2, 3]):
- super(LiteHRNet, self).__init__()
- if isinstance(return_idx, Integral):
- return_idx = [return_idx]
- assert network_type in ["lite_18", "lite_30", "naive", "wider_naive"], \
- "the network_type should be one of [lite_18, lite_30, naive, wider_naive]"
- assert len(return_idx) > 0, "need one or more return index"
- self.freeze_at = freeze_at
- self.freeze_norm = freeze_norm
- self.norm_decay = norm_decay
- self.return_idx = return_idx
- self.norm_type = 'bn'
- self.module_configs = {
- "lite_18": {
- "num_modules": [2, 4, 2],
- "num_branches": [2, 3, 4],
- "num_blocks": [2, 2, 2],
- "module_type": ["LITE", "LITE", "LITE"],
- "reduce_ratios": [8, 8, 8],
- "num_channels": [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
- },
- "lite_30": {
- "num_modules": [3, 8, 3],
- "num_branches": [2, 3, 4],
- "num_blocks": [2, 2, 2],
- "module_type": ["LITE", "LITE", "LITE"],
- "reduce_ratios": [8, 8, 8],
- "num_channels": [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
- },
- "naive": {
- "num_modules": [2, 4, 2],
- "num_branches": [2, 3, 4],
- "num_blocks": [2, 2, 2],
- "module_type": ["NAIVE", "NAIVE", "NAIVE"],
- "reduce_ratios": [1, 1, 1],
- "num_channels": [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
- },
- "wider_naive": {
- "num_modules": [2, 4, 2],
- "num_branches": [2, 3, 4],
- "num_blocks": [2, 2, 2],
- "module_type": ["NAIVE", "NAIVE", "NAIVE"],
- "reduce_ratios": [1, 1, 1],
- "num_channels": [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
- },
- }
- self.stages_config = self.module_configs[network_type]
- self.stem = Stem(3, 32, 32, 1)
- num_channels_pre_layer = [32]
- for stage_idx in range(3):
- num_channels = self.stages_config["num_channels"][stage_idx]
- setattr(self, 'transition{}'.format(stage_idx),
- self._make_transition_layer(num_channels_pre_layer,
- num_channels, self.freeze_norm,
- self.norm_decay))
- stage, num_channels_pre_layer = self._make_stage(
- self.stages_config, stage_idx, num_channels, True,
- self.freeze_norm, self.norm_decay)
- setattr(self, 'stage{}'.format(stage_idx), stage)
- self.head_layer = IterativeHead(num_channels_pre_layer, 'bn',
- self.freeze_norm, self.norm_decay)
- def _make_transition_layer(self,
- num_channels_pre_layer,
- num_channels_cur_layer,
- freeze_norm=False,
- norm_decay=0.):
- num_branches_pre = len(num_channels_pre_layer)
- num_branches_cur = len(num_channels_cur_layer)
- transition_layers = []
- for i in range(num_branches_cur):
- if i < num_branches_pre:
- if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
- transition_layers.append(
- nn.Sequential(
- L.Conv2d(
- num_channels_pre_layer[i],
- num_channels_pre_layer[i],
- kernel_size=3,
- stride=1,
- padding=1,
- groups=num_channels_pre_layer[i],
- bias=False),
- nn.BatchNorm2D(num_channels_pre_layer[i]),
- L.Conv2d(
- num_channels_pre_layer[i],
- num_channels_cur_layer[i],
- kernel_size=1,
- stride=1,
- padding=0,
- bias=False, ),
- nn.BatchNorm2D(num_channels_cur_layer[i]),
- nn.ReLU()))
- else:
- transition_layers.append(None)
- else:
- conv_downsamples = []
- for j in range(i + 1 - num_branches_pre):
- conv_downsamples.append(
- nn.Sequential(
- L.Conv2d(
- num_channels_pre_layer[-1],
- num_channels_pre_layer[-1],
- groups=num_channels_pre_layer[-1],
- kernel_size=3,
- stride=2,
- padding=1,
- bias=False, ),
- nn.BatchNorm2D(num_channels_pre_layer[-1]),
- L.Conv2d(
- num_channels_pre_layer[-1],
- num_channels_cur_layer[i]
- if j == i - num_branches_pre else
- num_channels_pre_layer[-1],
- kernel_size=1,
- stride=1,
- padding=0,
- bias=False, ),
- nn.BatchNorm2D(num_channels_cur_layer[i]
- if j == i - num_branches_pre else
- num_channels_pre_layer[-1]),
- nn.ReLU()))
- transition_layers.append(nn.Sequential(*conv_downsamples))
- return nn.LayerList(transition_layers)
- def _make_stage(self,
- stages_config,
- stage_idx,
- in_channels,
- multiscale_output,
- freeze_norm=False,
- norm_decay=0.):
- num_modules = stages_config["num_modules"][stage_idx]
- num_branches = stages_config["num_branches"][stage_idx]
- num_blocks = stages_config["num_blocks"][stage_idx]
- reduce_ratio = stages_config['reduce_ratios'][stage_idx]
- module_type = stages_config['module_type'][stage_idx]
- modules = []
- for i in range(num_modules):
- if not multiscale_output and i == num_modules - 1:
- reset_multiscale_output = False
- else:
- reset_multiscale_output = True
- modules.append(
- LiteHRNetModule(
- num_branches,
- num_blocks,
- in_channels,
- reduce_ratio,
- module_type,
- multiscale_output=reset_multiscale_output,
- with_fuse=True,
- freeze_norm=freeze_norm,
- norm_decay=norm_decay))
- in_channels = modules[-1].in_channels
- return nn.Sequential(*modules), in_channels
- def forward(self, inputs):
- x = inputs['image']
- x = self.stem(x)
- y_list = [x]
- for stage_idx in range(3):
- x_list = []
- transition = getattr(self, 'transition{}'.format(stage_idx))
- for j in range(self.stages_config["num_branches"][stage_idx]):
- if transition[j] is not None:
- if j >= len(y_list):
- x_list.append(transition[j](y_list[-1]))
- else:
- x_list.append(transition[j](y_list[j]))
- else:
- x_list.append(y_list[j])
- y_list = getattr(self, 'stage{}'.format(stage_idx))(x_list)
- x = self.head_layer(y_list)
- res = []
- for i, layer in enumerate(x):
- if i == self.freeze_at:
- layer.stop_gradient = True
- if i in self.return_idx:
- res.append(layer)
- return res
- @property
- def out_shape(self):
- return [
- ShapeSpec(
- channels=self._out_channels[i], stride=self._out_strides[i])
- for i in self.return_idx
- ]
|