123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- from ppdet.core.workspace import register
- from ..shape_spec import ShapeSpec
- __all__ = ['HarDNet']
- def ConvLayer(in_channels,
- out_channels,
- kernel_size=3,
- stride=1,
- bias_attr=False):
- layer = nn.Sequential(
- ('conv', nn.Conv2D(
- in_channels,
- out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=kernel_size // 2,
- groups=1,
- bias_attr=bias_attr)), ('norm', nn.BatchNorm2D(out_channels)),
- ('relu', nn.ReLU6()))
- return layer
- def DWConvLayer(in_channels,
- out_channels,
- kernel_size=3,
- stride=1,
- bias_attr=False):
- layer = nn.Sequential(
- ('dwconv', nn.Conv2D(
- in_channels,
- out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=1,
- groups=out_channels,
- bias_attr=bias_attr)), ('norm', nn.BatchNorm2D(out_channels)))
- return layer
- def CombConvLayer(in_channels, out_channels, kernel_size=1, stride=1):
- layer = nn.Sequential(
- ('layer1', ConvLayer(
- in_channels, out_channels, kernel_size=kernel_size)),
- ('layer2', DWConvLayer(
- out_channels, out_channels, stride=stride)))
- return layer
- class HarDBlock(nn.Layer):
- def __init__(self,
- in_channels,
- growth_rate,
- grmul,
- n_layers,
- keepBase=False,
- residual_out=False,
- dwconv=False):
- super().__init__()
- self.keepBase = keepBase
- self.links = []
- layers_ = []
- self.out_channels = 0
- for i in range(n_layers):
- outch, inch, link = self.get_link(i + 1, in_channels, growth_rate,
- grmul)
- self.links.append(link)
- if dwconv:
- layers_.append(CombConvLayer(inch, outch))
- else:
- layers_.append(ConvLayer(inch, outch))
- if (i % 2 == 0) or (i == n_layers - 1):
- self.out_channels += outch
- self.layers = nn.LayerList(layers_)
- def get_out_ch(self):
- return self.out_channels
- def get_link(self, layer, base_ch, growth_rate, grmul):
- if layer == 0:
- return base_ch, 0, []
- out_channels = growth_rate
- link = []
- for i in range(10):
- dv = 2**i
- if layer % dv == 0:
- k = layer - dv
- link.append(k)
- if i > 0:
- out_channels *= grmul
- out_channels = int(int(out_channels + 1) / 2) * 2
- in_channels = 0
- for i in link:
- ch, _, _ = self.get_link(i, base_ch, growth_rate, grmul)
- in_channels += ch
- return out_channels, in_channels, link
- def forward(self, x):
- layers_ = [x]
- for layer in range(len(self.layers)):
- link = self.links[layer]
- tin = []
- for i in link:
- tin.append(layers_[i])
- if len(tin) > 1:
- x = paddle.concat(tin, 1)
- else:
- x = tin[0]
- out = self.layers[layer](x)
- layers_.append(out)
- t = len(layers_)
- out_ = []
- for i in range(t):
- if (i == 0 and self.keepBase) or (i == t - 1) or (i % 2 == 1):
- out_.append(layers_[i])
- out = paddle.concat(out_, 1)
- return out
- @register
- class HarDNet(nn.Layer):
- def __init__(self, depth_wise=False, return_idx=[1, 3, 8, 13], arch=85):
- super(HarDNet, self).__init__()
- assert arch in [39, 68, 85], "HarDNet-{} not support.".format(arch)
- if arch == 85:
- first_ch = [48, 96]
- second_kernel = 3
- ch_list = [192, 256, 320, 480, 720]
- grmul = 1.7
- gr = [24, 24, 28, 36, 48]
- n_layers = [8, 16, 16, 16, 16]
- elif arch == 68:
- first_ch = [32, 64]
- second_kernel = 3
- ch_list = [128, 256, 320, 640]
- grmul = 1.7
- gr = [14, 16, 20, 40]
- n_layers = [8, 16, 16, 16]
- self.return_idx = return_idx
- self._out_channels = [96, 214, 458, 784]
- avg_pool = True
- if depth_wise:
- second_kernel = 1
- avg_pool = False
- blks = len(n_layers)
- self.base = nn.LayerList([])
- # First Layer: Standard Conv3x3, Stride=2
- self.base.append(
- ConvLayer(
- in_channels=3,
- out_channels=first_ch[0],
- kernel_size=3,
- stride=2,
- bias_attr=False))
- # Second Layer
- self.base.append(
- ConvLayer(
- first_ch[0], first_ch[1], kernel_size=second_kernel))
- # Avgpooling or DWConv3x3 downsampling
- if avg_pool:
- self.base.append(nn.AvgPool2D(kernel_size=3, stride=2, padding=1))
- else:
- self.base.append(DWConvLayer(first_ch[1], first_ch[1], stride=2))
- # Build all HarDNet blocks
- ch = first_ch[1]
- for i in range(blks):
- blk = HarDBlock(ch, gr[i], grmul, n_layers[i], dwconv=depth_wise)
- ch = blk.out_channels
- self.base.append(blk)
- if i != blks - 1:
- self.base.append(ConvLayer(ch, ch_list[i], kernel_size=1))
- ch = ch_list[i]
- if i == 0:
- self.base.append(
- nn.AvgPool2D(
- kernel_size=2, stride=2, ceil_mode=True))
- elif i != blks - 1 and i != 1 and i != 3:
- self.base.append(nn.AvgPool2D(kernel_size=2, stride=2))
- def forward(self, inputs):
- x = inputs['image']
- outs = []
- for i, layer in enumerate(self.base):
- x = layer(x)
- if i in self.return_idx:
- outs.append(x)
- return outs
- @property
- def out_shape(self):
- return [ShapeSpec(channels=self._out_channels[i]) for i in range(4)]
|