123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle.nn import AdaptiveAvgPool2D, Linear
- from paddle.nn.initializer import Uniform
- from ppdet.core.workspace import register, serializable
- from numbers import Integral
- from ..shape_spec import ShapeSpec
- from .mobilenet_v3 import make_divisible, ConvBNLayer
- __all__ = ['GhostNet']
- class ExtraBlockDW(nn.Layer):
- def __init__(self,
- in_c,
- ch_1,
- ch_2,
- stride,
- lr_mult,
- conv_decay=0.,
- norm_type='bn',
- norm_decay=0.,
- freeze_norm=False,
- name=None):
- super(ExtraBlockDW, self).__init__()
- self.pointwise_conv = ConvBNLayer(
- in_c=in_c,
- out_c=ch_1,
- filter_size=1,
- stride=1,
- padding=0,
- act='relu6',
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name=name + "_extra1")
- self.depthwise_conv = ConvBNLayer(
- in_c=ch_1,
- out_c=ch_2,
- filter_size=3,
- stride=stride,
- padding=1, #
- num_groups=int(ch_1),
- act='relu6',
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name=name + "_extra2_dw")
- self.normal_conv = ConvBNLayer(
- in_c=ch_2,
- out_c=ch_2,
- filter_size=1,
- stride=1,
- padding=0,
- act='relu6',
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name=name + "_extra2_sep")
- def forward(self, inputs):
- x = self.pointwise_conv(inputs)
- x = self.depthwise_conv(x)
- x = self.normal_conv(x)
- return x
- class SEBlock(nn.Layer):
- def __init__(self, num_channels, lr_mult, reduction_ratio=4, name=None):
- super(SEBlock, self).__init__()
- self.pool2d_gap = AdaptiveAvgPool2D(1)
- self._num_channels = num_channels
- stdv = 1.0 / math.sqrt(num_channels * 1.0)
- med_ch = num_channels // reduction_ratio
- self.squeeze = Linear(
- num_channels,
- med_ch,
- weight_attr=ParamAttr(
- learning_rate=lr_mult, initializer=Uniform(-stdv, stdv)),
- bias_attr=ParamAttr(learning_rate=lr_mult))
- stdv = 1.0 / math.sqrt(med_ch * 1.0)
- self.excitation = Linear(
- med_ch,
- num_channels,
- weight_attr=ParamAttr(
- learning_rate=lr_mult, initializer=Uniform(-stdv, stdv)),
- bias_attr=ParamAttr(learning_rate=lr_mult))
- def forward(self, inputs):
- pool = self.pool2d_gap(inputs)
- pool = paddle.squeeze(pool, axis=[2, 3])
- squeeze = self.squeeze(pool)
- squeeze = F.relu(squeeze)
- excitation = self.excitation(squeeze)
- excitation = paddle.clip(x=excitation, min=0, max=1)
- excitation = paddle.unsqueeze(excitation, axis=[2, 3])
- out = paddle.multiply(inputs, excitation)
- return out
- class GhostModule(nn.Layer):
- def __init__(self,
- in_channels,
- output_channels,
- kernel_size=1,
- ratio=2,
- dw_size=3,
- stride=1,
- relu=True,
- lr_mult=1.,
- conv_decay=0.,
- norm_type='bn',
- norm_decay=0.,
- freeze_norm=False,
- name=None):
- super(GhostModule, self).__init__()
- init_channels = int(math.ceil(output_channels / ratio))
- new_channels = int(init_channels * (ratio - 1))
- self.primary_conv = ConvBNLayer(
- in_c=in_channels,
- out_c=init_channels,
- filter_size=kernel_size,
- stride=stride,
- padding=int((kernel_size - 1) // 2),
- num_groups=1,
- act="relu" if relu else None,
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name=name + "_primary_conv")
- self.cheap_operation = ConvBNLayer(
- in_c=init_channels,
- out_c=new_channels,
- filter_size=dw_size,
- stride=1,
- padding=int((dw_size - 1) // 2),
- num_groups=init_channels,
- act="relu" if relu else None,
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name=name + "_cheap_operation")
- def forward(self, inputs):
- x = self.primary_conv(inputs)
- y = self.cheap_operation(x)
- out = paddle.concat([x, y], axis=1)
- return out
- class GhostBottleneck(nn.Layer):
- def __init__(self,
- in_channels,
- hidden_dim,
- output_channels,
- kernel_size,
- stride,
- use_se,
- lr_mult,
- conv_decay=0.,
- norm_type='bn',
- norm_decay=0.,
- freeze_norm=False,
- return_list=False,
- name=None):
- super(GhostBottleneck, self).__init__()
- self._stride = stride
- self._use_se = use_se
- self._num_channels = in_channels
- self._output_channels = output_channels
- self.return_list = return_list
- self.ghost_module_1 = GhostModule(
- in_channels=in_channels,
- output_channels=hidden_dim,
- kernel_size=1,
- stride=1,
- relu=True,
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name=name + "_ghost_module_1")
- if stride == 2:
- self.depthwise_conv = ConvBNLayer(
- in_c=hidden_dim,
- out_c=hidden_dim,
- filter_size=kernel_size,
- stride=stride,
- padding=int((kernel_size - 1) // 2),
- num_groups=hidden_dim,
- act=None,
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name=name +
- "_depthwise_depthwise" # looks strange due to an old typo, will be fixed later.
- )
- if use_se:
- self.se_block = SEBlock(hidden_dim, lr_mult, name=name + "_se")
- self.ghost_module_2 = GhostModule(
- in_channels=hidden_dim,
- output_channels=output_channels,
- kernel_size=1,
- relu=False,
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name=name + "_ghost_module_2")
- if stride != 1 or in_channels != output_channels:
- self.shortcut_depthwise = ConvBNLayer(
- in_c=in_channels,
- out_c=in_channels,
- filter_size=kernel_size,
- stride=stride,
- padding=int((kernel_size - 1) // 2),
- num_groups=in_channels,
- act=None,
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name=name +
- "_shortcut_depthwise_depthwise" # looks strange due to an old typo, will be fixed later.
- )
- self.shortcut_conv = ConvBNLayer(
- in_c=in_channels,
- out_c=output_channels,
- filter_size=1,
- stride=1,
- padding=0,
- num_groups=1,
- act=None,
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name=name + "_shortcut_conv")
- def forward(self, inputs):
- y = self.ghost_module_1(inputs)
- x = y
- if self._stride == 2:
- x = self.depthwise_conv(x)
- if self._use_se:
- x = self.se_block(x)
- x = self.ghost_module_2(x)
- if self._stride == 1 and self._num_channels == self._output_channels:
- shortcut = inputs
- else:
- shortcut = self.shortcut_depthwise(inputs)
- shortcut = self.shortcut_conv(shortcut)
- x = paddle.add(x=x, y=shortcut)
- if self.return_list:
- return [y, x]
- else:
- return x
- @register
- @serializable
- class GhostNet(nn.Layer):
- __shared__ = ['norm_type']
- def __init__(
- self,
- scale=1.3,
- feature_maps=[6, 12, 15],
- with_extra_blocks=False,
- extra_block_filters=[[256, 512], [128, 256], [128, 256], [64, 128]],
- lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
- conv_decay=0.,
- norm_type='bn',
- norm_decay=0.0,
- freeze_norm=False):
- super(GhostNet, self).__init__()
- if isinstance(feature_maps, Integral):
- feature_maps = [feature_maps]
- if norm_type == 'sync_bn' and freeze_norm:
- raise ValueError(
- "The norm_type should not be sync_bn when freeze_norm is True")
- self.feature_maps = feature_maps
- self.with_extra_blocks = with_extra_blocks
- self.extra_block_filters = extra_block_filters
- inplanes = 16
- self.cfgs = [
- # k, t, c, SE, s
- [3, 16, 16, 0, 1],
- [3, 48, 24, 0, 2],
- [3, 72, 24, 0, 1],
- [5, 72, 40, 1, 2],
- [5, 120, 40, 1, 1],
- [3, 240, 80, 0, 2],
- [3, 200, 80, 0, 1],
- [3, 184, 80, 0, 1],
- [3, 184, 80, 0, 1],
- [3, 480, 112, 1, 1],
- [3, 672, 112, 1, 1],
- [5, 672, 160, 1, 2], # SSDLite output
- [5, 960, 160, 0, 1],
- [5, 960, 160, 1, 1],
- [5, 960, 160, 0, 1],
- [5, 960, 160, 1, 1]
- ]
- self.scale = scale
- conv1_out_ch = int(make_divisible(inplanes * self.scale, 4))
- self.conv1 = ConvBNLayer(
- in_c=3,
- out_c=conv1_out_ch,
- filter_size=3,
- stride=2,
- padding=1,
- num_groups=1,
- act="relu",
- lr_mult=1.,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name="conv1")
- # build inverted residual blocks
- self._out_channels = []
- self.ghost_bottleneck_list = []
- idx = 0
- inplanes = conv1_out_ch
- for k, exp_size, c, use_se, s in self.cfgs:
- lr_idx = min(idx // 3, len(lr_mult_list) - 1)
- lr_mult = lr_mult_list[lr_idx]
- # for SSD/SSDLite, first head input is after ResidualUnit expand_conv
- return_list = self.with_extra_blocks and idx + 2 in self.feature_maps
- ghost_bottleneck = self.add_sublayer(
- "_ghostbottleneck_" + str(idx),
- sublayer=GhostBottleneck(
- in_channels=inplanes,
- hidden_dim=int(make_divisible(exp_size * self.scale, 4)),
- output_channels=int(make_divisible(c * self.scale, 4)),
- kernel_size=k,
- stride=s,
- use_se=use_se,
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- return_list=return_list,
- name="_ghostbottleneck_" + str(idx)))
- self.ghost_bottleneck_list.append(ghost_bottleneck)
- inplanes = int(make_divisible(c * self.scale, 4))
- idx += 1
- self._update_out_channels(
- int(make_divisible(exp_size * self.scale, 4))
- if return_list else inplanes, idx + 1, feature_maps)
- if self.with_extra_blocks:
- self.extra_block_list = []
- extra_out_c = int(make_divisible(self.scale * self.cfgs[-1][1], 4))
- lr_idx = min(idx // 3, len(lr_mult_list) - 1)
- lr_mult = lr_mult_list[lr_idx]
- conv_extra = self.add_sublayer(
- "conv" + str(idx + 2),
- sublayer=ConvBNLayer(
- in_c=inplanes,
- out_c=extra_out_c,
- filter_size=1,
- stride=1,
- padding=0,
- num_groups=1,
- act="relu6",
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name="conv" + str(idx + 2)))
- self.extra_block_list.append(conv_extra)
- idx += 1
- self._update_out_channels(extra_out_c, idx + 1, feature_maps)
- for j, block_filter in enumerate(self.extra_block_filters):
- in_c = extra_out_c if j == 0 else self.extra_block_filters[j -
- 1][1]
- conv_extra = self.add_sublayer(
- "conv" + str(idx + 2),
- sublayer=ExtraBlockDW(
- in_c,
- block_filter[0],
- block_filter[1],
- stride=2,
- lr_mult=lr_mult,
- conv_decay=conv_decay,
- norm_type=norm_type,
- norm_decay=norm_decay,
- freeze_norm=freeze_norm,
- name='conv' + str(idx + 2)))
- self.extra_block_list.append(conv_extra)
- idx += 1
- self._update_out_channels(block_filter[1], idx + 1,
- feature_maps)
- def _update_out_channels(self, channel, feature_idx, feature_maps):
- if feature_idx in feature_maps:
- self._out_channels.append(channel)
- def forward(self, inputs):
- x = self.conv1(inputs['image'])
- outs = []
- for idx, ghost_bottleneck in enumerate(self.ghost_bottleneck_list):
- x = ghost_bottleneck(x)
- if idx + 2 in self.feature_maps:
- if isinstance(x, list):
- outs.append(x[0])
- x = x[1]
- else:
- outs.append(x)
- if not self.with_extra_blocks:
- return outs
- for i, block in enumerate(self.extra_block_list):
- idx = i + len(self.ghost_bottleneck_list)
- x = block(x)
- if idx + 2 in self.feature_maps:
- outs.append(x)
- return outs
- @property
- def out_shape(self):
- return [ShapeSpec(channels=c) for c in self._out_channels]
|