123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- from paddle.nn.initializer import KaimingNormal
- from ppdet.core.workspace import register, serializable
- from ..shape_spec import ShapeSpec
- __all__ = ['BlazeNet']
- def hard_swish(x):
- return x * F.relu6(x + 3) / 6.
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size,
- stride,
- padding,
- num_groups=1,
- act='relu',
- conv_lr=0.1,
- conv_decay=0.,
- norm_decay=0.,
- norm_type='bn',
- name=None):
- super(ConvBNLayer, self).__init__()
- self.act = act
- self._conv = nn.Conv2D(
- in_channels,
- out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- groups=num_groups,
- weight_attr=ParamAttr(
- learning_rate=conv_lr, initializer=KaimingNormal()),
- bias_attr=False)
- if norm_type in ['bn', 'sync_bn']:
- self._batch_norm = nn.BatchNorm2D(out_channels)
- def forward(self, x):
- x = self._conv(x)
- x = self._batch_norm(x)
- if self.act == "relu":
- x = F.relu(x)
- elif self.act == "relu6":
- x = F.relu6(x)
- elif self.act == 'leaky':
- x = F.leaky_relu(x)
- elif self.act == 'hard_swish':
- x = hard_swish(x)
- return x
- class BlazeBlock(nn.Layer):
- def __init__(self,
- in_channels,
- out_channels1,
- out_channels2,
- double_channels=None,
- stride=1,
- use_5x5kernel=True,
- act='relu',
- name=None):
- super(BlazeBlock, self).__init__()
- assert stride in [1, 2]
- self.use_pool = not stride == 1
- self.use_double_block = double_channels is not None
- self.conv_dw = []
- if use_5x5kernel:
- self.conv_dw.append(
- self.add_sublayer(
- name + "1_dw",
- ConvBNLayer(
- in_channels=in_channels,
- out_channels=out_channels1,
- kernel_size=5,
- stride=stride,
- padding=2,
- num_groups=out_channels1,
- name=name + "1_dw")))
- else:
- self.conv_dw.append(
- self.add_sublayer(
- name + "1_dw_1",
- ConvBNLayer(
- in_channels=in_channels,
- out_channels=out_channels1,
- kernel_size=3,
- stride=1,
- padding=1,
- num_groups=out_channels1,
- name=name + "1_dw_1")))
- self.conv_dw.append(
- self.add_sublayer(
- name + "1_dw_2",
- ConvBNLayer(
- in_channels=out_channels1,
- out_channels=out_channels1,
- kernel_size=3,
- stride=stride,
- padding=1,
- num_groups=out_channels1,
- name=name + "1_dw_2")))
- self.act = act if self.use_double_block else None
- self.conv_pw = ConvBNLayer(
- in_channels=out_channels1,
- out_channels=out_channels2,
- kernel_size=1,
- stride=1,
- padding=0,
- act=self.act,
- name=name + "1_sep")
- if self.use_double_block:
- self.conv_dw2 = []
- if use_5x5kernel:
- self.conv_dw2.append(
- self.add_sublayer(
- name + "2_dw",
- ConvBNLayer(
- in_channels=out_channels2,
- out_channels=out_channels2,
- kernel_size=5,
- stride=1,
- padding=2,
- num_groups=out_channels2,
- name=name + "2_dw")))
- else:
- self.conv_dw2.append(
- self.add_sublayer(
- name + "2_dw_1",
- ConvBNLayer(
- in_channels=out_channels2,
- out_channels=out_channels2,
- kernel_size=3,
- stride=1,
- padding=1,
- num_groups=out_channels2,
- name=name + "1_dw_1")))
- self.conv_dw2.append(
- self.add_sublayer(
- name + "2_dw_2",
- ConvBNLayer(
- in_channels=out_channels2,
- out_channels=out_channels2,
- kernel_size=3,
- stride=1,
- padding=1,
- num_groups=out_channels2,
- name=name + "2_dw_2")))
- self.conv_pw2 = ConvBNLayer(
- in_channels=out_channels2,
- out_channels=double_channels,
- kernel_size=1,
- stride=1,
- padding=0,
- name=name + "2_sep")
- # shortcut
- if self.use_pool:
- shortcut_channel = double_channels or out_channels2
- self._shortcut = []
- self._shortcut.append(
- self.add_sublayer(
- name + '_shortcut_pool',
- nn.MaxPool2D(
- kernel_size=stride, stride=stride, ceil_mode=True)))
- self._shortcut.append(
- self.add_sublayer(
- name + '_shortcut_conv',
- ConvBNLayer(
- in_channels=in_channels,
- out_channels=shortcut_channel,
- kernel_size=1,
- stride=1,
- padding=0,
- name="shortcut" + name)))
- def forward(self, x):
- y = x
- for conv_dw_block in self.conv_dw:
- y = conv_dw_block(y)
- y = self.conv_pw(y)
- if self.use_double_block:
- for conv_dw2_block in self.conv_dw2:
- y = conv_dw2_block(y)
- y = self.conv_pw2(y)
- if self.use_pool:
- for shortcut in self._shortcut:
- x = shortcut(x)
- return F.relu(paddle.add(x, y))
- @register
- @serializable
- class BlazeNet(nn.Layer):
- """
- BlazeFace, see https://arxiv.org/abs/1907.05047
- Args:
- blaze_filters (list): number of filter for each blaze block.
- double_blaze_filters (list): number of filter for each double_blaze block.
- use_5x5kernel (bool): whether or not filter size is 5x5 in depth-wise conv.
- """
- def __init__(
- self,
- blaze_filters=[[24, 24], [24, 24], [24, 48, 2], [48, 48], [48, 48]],
- double_blaze_filters=[[48, 24, 96, 2], [96, 24, 96], [96, 24, 96],
- [96, 24, 96, 2], [96, 24, 96], [96, 24, 96]],
- use_5x5kernel=True,
- act=None):
- super(BlazeNet, self).__init__()
- conv1_num_filters = blaze_filters[0][0]
- self.conv1 = ConvBNLayer(
- in_channels=3,
- out_channels=conv1_num_filters,
- kernel_size=3,
- stride=2,
- padding=1,
- name="conv1")
- in_channels = conv1_num_filters
- self.blaze_block = []
- self._out_channels = []
- for k, v in enumerate(blaze_filters):
- assert len(v) in [2, 3], \
- "blaze_filters {} not in [2, 3]"
- if len(v) == 2:
- self.blaze_block.append(
- self.add_sublayer(
- 'blaze_{}'.format(k),
- BlazeBlock(
- in_channels,
- v[0],
- v[1],
- use_5x5kernel=use_5x5kernel,
- act=act,
- name='blaze_{}'.format(k))))
- elif len(v) == 3:
- self.blaze_block.append(
- self.add_sublayer(
- 'blaze_{}'.format(k),
- BlazeBlock(
- in_channels,
- v[0],
- v[1],
- stride=v[2],
- use_5x5kernel=use_5x5kernel,
- act=act,
- name='blaze_{}'.format(k))))
- in_channels = v[1]
- for k, v in enumerate(double_blaze_filters):
- assert len(v) in [3, 4], \
- "blaze_filters {} not in [3, 4]"
- if len(v) == 3:
- self.blaze_block.append(
- self.add_sublayer(
- 'double_blaze_{}'.format(k),
- BlazeBlock(
- in_channels,
- v[0],
- v[1],
- double_channels=v[2],
- use_5x5kernel=use_5x5kernel,
- act=act,
- name='double_blaze_{}'.format(k))))
- elif len(v) == 4:
- self.blaze_block.append(
- self.add_sublayer(
- 'double_blaze_{}'.format(k),
- BlazeBlock(
- in_channels,
- v[0],
- v[1],
- double_channels=v[2],
- stride=v[3],
- use_5x5kernel=use_5x5kernel,
- act=act,
- name='double_blaze_{}'.format(k))))
- in_channels = v[2]
- self._out_channels.append(in_channels)
- def forward(self, inputs):
- outs = []
- y = self.conv1(inputs['image'])
- for block in self.blaze_block:
- y = block(y)
- outs.append(y)
- return [outs[-4], outs[-1]]
- @property
- def out_shape(self):
- return [
- ShapeSpec(channels=c)
- for c in [self._out_channels[-4], self._out_channels[-1]]
- ]
|