123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from ppdet.core.workspace import register
- from ..bbox_utils import iou_similarity
- from .utils import (gather_topk_anchors, check_points_inside_bboxes,
- compute_max_iou_anchor)
- __all__ = ['TaskAlignedAssigner']
- @register
- class TaskAlignedAssigner(nn.Layer):
- """TOOD: Task-aligned One-stage Object Detection
- """
- def __init__(self, topk=13, alpha=1.0, beta=6.0, eps=1e-9):
- super(TaskAlignedAssigner, self).__init__()
- self.topk = topk
- self.alpha = alpha
- self.beta = beta
- self.eps = eps
- @paddle.no_grad()
- def forward(self,
- pred_scores,
- pred_bboxes,
- anchor_points,
- num_anchors_list,
- gt_labels,
- gt_bboxes,
- pad_gt_mask,
- bg_index,
- gt_scores=None):
- r"""This code is based on
- https://github.com/fcjian/TOOD/blob/master/mmdet/core/bbox/assigners/task_aligned_assigner.py
- The assignment is done in following steps
- 1. compute alignment metric between all bbox (bbox of all pyramid levels) and gt
- 2. select top-k bbox as candidates for each gt
- 3. limit the positive sample's center in gt (because the anchor-free detector
- only can predict positive distance)
- 4. if an anchor box is assigned to multiple gts, the one with the
- highest iou will be selected.
- Args:
- pred_scores (Tensor, float32): predicted class probability, shape(B, L, C)
- pred_bboxes (Tensor, float32): predicted bounding boxes, shape(B, L, 4)
- anchor_points (Tensor, float32): pre-defined anchors, shape(L, 2), "cxcy" format
- num_anchors_list (List): num of anchors in each level, shape(L)
- gt_labels (Tensor, int64|int32): Label of gt_bboxes, shape(B, n, 1)
- gt_bboxes (Tensor, float32): Ground truth bboxes, shape(B, n, 4)
- pad_gt_mask (Tensor, float32): 1 means bbox, 0 means no bbox, shape(B, n, 1)
- bg_index (int): background index
- gt_scores (Tensor|None, float32) Score of gt_bboxes, shape(B, n, 1)
- Returns:
- assigned_labels (Tensor): (B, L)
- assigned_bboxes (Tensor): (B, L, 4)
- assigned_scores (Tensor): (B, L, C)
- """
- assert pred_scores.ndim == pred_bboxes.ndim
- assert gt_labels.ndim == gt_bboxes.ndim and \
- gt_bboxes.ndim == 3
- batch_size, num_anchors, num_classes = pred_scores.shape
- _, num_max_boxes, _ = gt_bboxes.shape
- # negative batch
- if num_max_boxes == 0:
- assigned_labels = paddle.full(
- [batch_size, num_anchors], bg_index, dtype=gt_labels.dtype)
- assigned_bboxes = paddle.zeros([batch_size, num_anchors, 4])
- assigned_scores = paddle.zeros(
- [batch_size, num_anchors, num_classes])
- return assigned_labels, assigned_bboxes, assigned_scores
- # compute iou between gt and pred bbox, [B, n, L]
- ious = iou_similarity(gt_bboxes, pred_bboxes)
- # gather pred bboxes class score
- pred_scores = pred_scores.transpose([0, 2, 1])
- batch_ind = paddle.arange(
- end=batch_size, dtype=gt_labels.dtype).unsqueeze(-1)
- gt_labels_ind = paddle.stack(
- [batch_ind.tile([1, num_max_boxes]), gt_labels.squeeze(-1)],
- axis=-1)
- bbox_cls_scores = paddle.gather_nd(pred_scores, gt_labels_ind)
- # compute alignment metrics, [B, n, L]
- alignment_metrics = bbox_cls_scores.pow(self.alpha) * ious.pow(
- self.beta)
- # check the positive sample's center in gt, [B, n, L]
- is_in_gts = check_points_inside_bboxes(anchor_points, gt_bboxes)
- # select topk largest alignment metrics pred bbox as candidates
- # for each gt, [B, n, L]
- is_in_topk = gather_topk_anchors(
- alignment_metrics * is_in_gts,
- self.topk,
- topk_mask=pad_gt_mask.tile([1, 1, self.topk]).astype(paddle.bool))
- # select positive sample, [B, n, L]
- mask_positive = is_in_topk * is_in_gts * pad_gt_mask
- # if an anchor box is assigned to multiple gts,
- # the one with the highest iou will be selected, [B, n, L]
- mask_positive_sum = mask_positive.sum(axis=-2)
- if mask_positive_sum.max() > 1:
- mask_multiple_gts = (mask_positive_sum.unsqueeze(1) > 1).tile(
- [1, num_max_boxes, 1])
- is_max_iou = compute_max_iou_anchor(ious)
- mask_positive = paddle.where(mask_multiple_gts, is_max_iou,
- mask_positive)
- mask_positive_sum = mask_positive.sum(axis=-2)
- assigned_gt_index = mask_positive.argmax(axis=-2)
- # assigned target
- assigned_gt_index = assigned_gt_index + batch_ind * num_max_boxes
- assigned_labels = paddle.gather(
- gt_labels.flatten(), assigned_gt_index.flatten(), axis=0)
- assigned_labels = assigned_labels.reshape([batch_size, num_anchors])
- assigned_labels = paddle.where(
- mask_positive_sum > 0, assigned_labels,
- paddle.full_like(assigned_labels, bg_index))
- assigned_bboxes = paddle.gather(
- gt_bboxes.reshape([-1, 4]), assigned_gt_index.flatten(), axis=0)
- assigned_bboxes = assigned_bboxes.reshape([batch_size, num_anchors, 4])
- assigned_scores = F.one_hot(assigned_labels, num_classes + 1)
- ind = list(range(num_classes + 1))
- ind.remove(bg_index)
- assigned_scores = paddle.index_select(
- assigned_scores, paddle.to_tensor(ind), axis=-1)
- # rescale alignment metrics
- alignment_metrics *= mask_positive
- max_metrics_per_instance = alignment_metrics.max(axis=-1, keepdim=True)
- max_ious_per_instance = (ious * mask_positive).max(axis=-1,
- keepdim=True)
- alignment_metrics = alignment_metrics / (
- max_metrics_per_instance + self.eps) * max_ious_per_instance
- alignment_metrics = alignment_metrics.max(-2).unsqueeze(-1)
- assigned_scores = assigned_scores * alignment_metrics
- return assigned_labels, assigned_bboxes, assigned_scores
|