1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- __all__ = ['TTFNet']
- @register
- class TTFNet(BaseArch):
- """
- TTFNet network, see https://arxiv.org/abs/1909.00700
- Args:
- backbone (object): backbone instance
- neck (object): 'TTFFPN' instance
- ttf_head (object): 'TTFHead' instance
- post_process (object): 'BBoxPostProcess' instance
- """
- __category__ = 'architecture'
- __inject__ = ['post_process']
- def __init__(self,
- backbone='DarkNet',
- neck='TTFFPN',
- ttf_head='TTFHead',
- post_process='BBoxPostProcess'):
- super(TTFNet, self).__init__()
- self.backbone = backbone
- self.neck = neck
- self.ttf_head = ttf_head
- self.post_process = post_process
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- backbone = create(cfg['backbone'])
- kwargs = {'input_shape': backbone.out_shape}
- neck = create(cfg['neck'], **kwargs)
- kwargs = {'input_shape': neck.out_shape}
- ttf_head = create(cfg['ttf_head'], **kwargs)
- return {
- 'backbone': backbone,
- 'neck': neck,
- "ttf_head": ttf_head,
- }
- def _forward(self):
- body_feats = self.backbone(self.inputs)
- body_feats = self.neck(body_feats)
- hm, wh = self.ttf_head(body_feats)
- if self.training:
- return hm, wh
- else:
- bbox, bbox_num = self.post_process(hm, wh, self.inputs['im_shape'],
- self.inputs['scale_factor'])
- return bbox, bbox_num
- def get_loss(self, ):
- loss = {}
- heatmap = self.inputs['ttf_heatmap']
- box_target = self.inputs['ttf_box_target']
- reg_weight = self.inputs['ttf_reg_weight']
- hm, wh = self._forward()
- head_loss = self.ttf_head.get_loss(hm, wh, heatmap, box_target,
- reg_weight)
- loss.update(head_loss)
- total_loss = paddle.add_n(list(loss.values()))
- loss.update({'loss': total_loss})
- return loss
- def get_pred(self):
- bbox_pred, bbox_num = self._forward()
- output = {
- "bbox": bbox_pred,
- "bbox_num": bbox_num,
- }
- return output
|