123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- __all__ = ['SOLOv2']
- @register
- class SOLOv2(BaseArch):
- """
- SOLOv2 network, see https://arxiv.org/abs/2003.10152
- Args:
- backbone (object): an backbone instance
- solov2_head (object): an `SOLOv2Head` instance
- mask_head (object): an `SOLOv2MaskHead` instance
- neck (object): neck of network, such as feature pyramid network instance
- """
- __category__ = 'architecture'
- def __init__(self, backbone, solov2_head, mask_head, neck=None):
- super(SOLOv2, self).__init__()
- self.backbone = backbone
- self.neck = neck
- self.solov2_head = solov2_head
- self.mask_head = mask_head
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- backbone = create(cfg['backbone'])
- kwargs = {'input_shape': backbone.out_shape}
- neck = create(cfg['neck'], **kwargs)
- kwargs = {'input_shape': neck.out_shape}
- solov2_head = create(cfg['solov2_head'], **kwargs)
- mask_head = create(cfg['mask_head'], **kwargs)
- return {
- 'backbone': backbone,
- 'neck': neck,
- 'solov2_head': solov2_head,
- 'mask_head': mask_head,
- }
- def model_arch(self):
- body_feats = self.backbone(self.inputs)
- body_feats = self.neck(body_feats)
- self.seg_pred = self.mask_head(body_feats)
- self.cate_pred_list, self.kernel_pred_list = self.solov2_head(
- body_feats)
- def get_loss(self, ):
- loss = {}
- # get gt_ins_labels, gt_cate_labels, etc.
- gt_ins_labels, gt_cate_labels, gt_grid_orders = [], [], []
- fg_num = self.inputs['fg_num']
- for i in range(len(self.solov2_head.seg_num_grids)):
- ins_label = 'ins_label{}'.format(i)
- if ins_label in self.inputs:
- gt_ins_labels.append(self.inputs[ins_label])
- cate_label = 'cate_label{}'.format(i)
- if cate_label in self.inputs:
- gt_cate_labels.append(self.inputs[cate_label])
- grid_order = 'grid_order{}'.format(i)
- if grid_order in self.inputs:
- gt_grid_orders.append(self.inputs[grid_order])
- loss_solov2 = self.solov2_head.get_loss(
- self.cate_pred_list, self.kernel_pred_list, self.seg_pred,
- gt_ins_labels, gt_cate_labels, gt_grid_orders, fg_num)
- loss.update(loss_solov2)
- total_loss = paddle.add_n(list(loss.values()))
- loss.update({'loss': total_loss})
- return loss
- def get_pred(self):
- seg_masks, cate_labels, cate_scores, bbox_num = self.solov2_head.get_prediction(
- self.cate_pred_list, self.kernel_pred_list, self.seg_pred,
- self.inputs['im_shape'], self.inputs['scale_factor'])
- outs = {
- "segm": seg_masks,
- "bbox_num": bbox_num,
- 'cate_label': cate_labels,
- 'cate_score': cate_scores
- }
- return outs
|