1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- __all__ = ['PicoDet']
- @register
- class PicoDet(BaseArch):
- """
- Generalized Focal Loss network, see https://arxiv.org/abs/2006.04388
- Args:
- backbone (object): backbone instance
- neck (object): 'FPN' instance
- head (object): 'PicoHead' instance
- """
- __category__ = 'architecture'
- def __init__(self, backbone, neck, head='PicoHead'):
- super(PicoDet, self).__init__()
- self.backbone = backbone
- self.neck = neck
- self.head = head
- self.export_post_process = True
- self.export_nms = True
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- backbone = create(cfg['backbone'])
- kwargs = {'input_shape': backbone.out_shape}
- neck = create(cfg['neck'], **kwargs)
- kwargs = {'input_shape': neck.out_shape}
- head = create(cfg['head'], **kwargs)
- return {
- 'backbone': backbone,
- 'neck': neck,
- "head": head,
- }
- def _forward(self):
- body_feats = self.backbone(self.inputs)
- fpn_feats = self.neck(body_feats)
- head_outs = self.head(fpn_feats, self.export_post_process)
- if self.training or not self.export_post_process:
- return head_outs, None
- else:
- scale_factor = self.inputs['scale_factor']
- bboxes, bbox_num = self.head.post_process(
- head_outs, scale_factor, export_nms=self.export_nms)
- return bboxes, bbox_num
- def get_loss(self, ):
- loss = {}
- head_outs, _ = self._forward()
- loss_gfl = self.head.get_loss(head_outs, self.inputs)
- loss.update(loss_gfl)
- total_loss = paddle.add_n(list(loss.values()))
- loss.update({'loss': total_loss})
- return loss
- def get_pred(self):
- if not self.export_post_process:
- return {'picodet': self._forward()[0]}
- elif self.export_nms:
- bbox_pred, bbox_num = self._forward()
- output = {'bbox': bbox_pred, 'bbox_num': bbox_num}
- return output
- else:
- bboxes, mlvl_scores = self._forward()
- output = {'bbox': bboxes, 'scores': mlvl_scores}
- return output
|