123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import numpy as np
- import math
- import cv2
- from ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- from ..keypoint_utils import transform_preds
- from .. import layers as L
- __all__ = ['TopDownHRNet']
- @register
- class TopDownHRNet(BaseArch):
- __category__ = 'architecture'
- __inject__ = ['loss']
- def __init__(self,
- width,
- num_joints,
- backbone='HRNet',
- loss='KeyPointMSELoss',
- post_process='HRNetPostProcess',
- flip_perm=None,
- flip=True,
- shift_heatmap=True,
- use_dark=True):
- """
- HRNet network, see https://arxiv.org/abs/1902.09212
- Args:
- backbone (nn.Layer): backbone instance
- post_process (object): `HRNetPostProcess` instance
- flip_perm (list): The left-right joints exchange order list
- use_dark(bool): Whether to use DARK in post processing
- """
- super(TopDownHRNet, self).__init__()
- self.backbone = backbone
- self.post_process = HRNetPostProcess(use_dark)
- self.loss = loss
- self.flip_perm = flip_perm
- self.flip = flip
- self.final_conv = L.Conv2d(width, num_joints, 1, 1, 0, bias=True)
- self.shift_heatmap = shift_heatmap
- self.deploy = False
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- # backbone
- backbone = create(cfg['backbone'])
- return {'backbone': backbone, }
- def _forward(self):
- feats = self.backbone(self.inputs)
- hrnet_outputs = self.final_conv(feats[0])
- if self.training:
- return self.loss(hrnet_outputs, self.inputs)
- elif self.deploy:
- outshape = hrnet_outputs.shape
- max_idx = paddle.argmax(
- hrnet_outputs.reshape(
- (outshape[0], outshape[1], outshape[2] * outshape[3])),
- axis=-1)
- return hrnet_outputs, max_idx
- else:
- if self.flip:
- self.inputs['image'] = self.inputs['image'].flip([3])
- feats = self.backbone(self.inputs)
- output_flipped = self.final_conv(feats[0])
- output_flipped = self.flip_back(output_flipped.numpy(),
- self.flip_perm)
- output_flipped = paddle.to_tensor(output_flipped.copy())
- if self.shift_heatmap:
- output_flipped[:, :, :, 1:] = output_flipped.clone(
- )[:, :, :, 0:-1]
- hrnet_outputs = (hrnet_outputs + output_flipped) * 0.5
- imshape = (self.inputs['im_shape'].numpy()
- )[:, ::-1] if 'im_shape' in self.inputs else None
- center = self.inputs['center'].numpy(
- ) if 'center' in self.inputs else np.round(imshape / 2.)
- scale = self.inputs['scale'].numpy(
- ) if 'scale' in self.inputs else imshape / 200.
- outputs = self.post_process(hrnet_outputs, center, scale)
- return outputs
- def get_loss(self):
- return self._forward()
- def get_pred(self):
- res_lst = self._forward()
- outputs = {'keypoint': res_lst}
- return outputs
- def flip_back(self, output_flipped, matched_parts):
- assert output_flipped.ndim == 4,\
- 'output_flipped should be [batch_size, num_joints, height, width]'
- output_flipped = output_flipped[:, :, :, ::-1]
- for pair in matched_parts:
- tmp = output_flipped[:, pair[0], :, :].copy()
- output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :]
- output_flipped[:, pair[1], :, :] = tmp
- return output_flipped
- class HRNetPostProcess(object):
- def __init__(self, use_dark=True):
- self.use_dark = use_dark
- def get_max_preds(self, heatmaps):
- '''get predictions from score maps
- Args:
- heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
- Returns:
- preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
- maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
- '''
- assert isinstance(heatmaps,
- np.ndarray), 'heatmaps should be numpy.ndarray'
- assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'
- batch_size = heatmaps.shape[0]
- num_joints = heatmaps.shape[1]
- width = heatmaps.shape[3]
- heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1))
- idx = np.argmax(heatmaps_reshaped, 2)
- maxvals = np.amax(heatmaps_reshaped, 2)
- maxvals = maxvals.reshape((batch_size, num_joints, 1))
- idx = idx.reshape((batch_size, num_joints, 1))
- preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
- preds[:, :, 0] = (preds[:, :, 0]) % width
- preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
- pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
- pred_mask = pred_mask.astype(np.float32)
- preds *= pred_mask
- return preds, maxvals
- def gaussian_blur(self, heatmap, kernel):
- border = (kernel - 1) // 2
- batch_size = heatmap.shape[0]
- num_joints = heatmap.shape[1]
- height = heatmap.shape[2]
- width = heatmap.shape[3]
- for i in range(batch_size):
- for j in range(num_joints):
- origin_max = np.max(heatmap[i, j])
- dr = np.zeros((height + 2 * border, width + 2 * border))
- dr[border:-border, border:-border] = heatmap[i, j].copy()
- dr = cv2.GaussianBlur(dr, (kernel, kernel), 0)
- heatmap[i, j] = dr[border:-border, border:-border].copy()
- heatmap[i, j] *= origin_max / np.max(heatmap[i, j])
- return heatmap
- def dark_parse(self, hm, coord):
- heatmap_height = hm.shape[0]
- heatmap_width = hm.shape[1]
- px = int(coord[0])
- py = int(coord[1])
- if 1 < px < heatmap_width - 2 and 1 < py < heatmap_height - 2:
- dx = 0.5 * (hm[py][px + 1] - hm[py][px - 1])
- dy = 0.5 * (hm[py + 1][px] - hm[py - 1][px])
- dxx = 0.25 * (hm[py][px + 2] - 2 * hm[py][px] + hm[py][px - 2])
- dxy = 0.25 * (hm[py+1][px+1] - hm[py-1][px+1] - hm[py+1][px-1] \
- + hm[py-1][px-1])
- dyy = 0.25 * (
- hm[py + 2 * 1][px] - 2 * hm[py][px] + hm[py - 2 * 1][px])
- derivative = np.matrix([[dx], [dy]])
- hessian = np.matrix([[dxx, dxy], [dxy, dyy]])
- if dxx * dyy - dxy**2 != 0:
- hessianinv = hessian.I
- offset = -hessianinv * derivative
- offset = np.squeeze(np.array(offset.T), axis=0)
- coord += offset
- return coord
- def dark_postprocess(self, hm, coords, kernelsize):
- '''DARK postpocessing, Zhang et al. Distribution-Aware Coordinate
- Representation for Human Pose Estimation (CVPR 2020).
- '''
- hm = self.gaussian_blur(hm, kernelsize)
- hm = np.maximum(hm, 1e-10)
- hm = np.log(hm)
- for n in range(coords.shape[0]):
- for p in range(coords.shape[1]):
- coords[n, p] = self.dark_parse(hm[n][p], coords[n][p])
- return coords
- def get_final_preds(self, heatmaps, center, scale, kernelsize=3):
- """the highest heatvalue location with a quarter offset in the
- direction from the highest response to the second highest response.
- Args:
- heatmaps (numpy.ndarray): The predicted heatmaps
- center (numpy.ndarray): The boxes center
- scale (numpy.ndarray): The scale factor
- Returns:
- preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
- maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
- """
- coords, maxvals = self.get_max_preds(heatmaps)
- heatmap_height = heatmaps.shape[2]
- heatmap_width = heatmaps.shape[3]
- if self.use_dark:
- coords = self.dark_postprocess(heatmaps, coords, kernelsize)
- else:
- for n in range(coords.shape[0]):
- for p in range(coords.shape[1]):
- hm = heatmaps[n][p]
- px = int(math.floor(coords[n][p][0] + 0.5))
- py = int(math.floor(coords[n][p][1] + 0.5))
- if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1:
- diff = np.array([
- hm[py][px + 1] - hm[py][px - 1],
- hm[py + 1][px] - hm[py - 1][px]
- ])
- coords[n][p] += np.sign(diff) * .25
- preds = coords.copy()
- # Transform back
- for i in range(coords.shape[0]):
- preds[i] = transform_preds(coords[i], center[i], scale[i],
- [heatmap_width, heatmap_height])
- return preds, maxvals
- def __call__(self, output, center, scale):
- preds, maxvals = self.get_final_preds(output.numpy(), center, scale)
- outputs = [[
- np.concatenate(
- (preds, maxvals), axis=-1), np.mean(
- maxvals, axis=1)
- ]]
- return outputs
|