123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- __all__ = ['JDE']
- @register
- class JDE(BaseArch):
- __category__ = 'architecture'
- __shared__ = ['metric']
- """
- JDE network, see https://arxiv.org/abs/1909.12605v1
- Args:
- detector (object): detector model instance
- reid (object): reid model instance
- tracker (object): tracker instance
- metric (str): 'MOTDet' for training and detection evaluation, 'ReID'
- for ReID embedding evaluation, or 'MOT' for multi object tracking
- evaluation.
- """
- def __init__(self,
- detector='YOLOv3',
- reid='JDEEmbeddingHead',
- tracker='JDETracker',
- metric='MOT'):
- super(JDE, self).__init__()
- self.detector = detector
- self.reid = reid
- self.tracker = tracker
- self.metric = metric
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- detector = create(cfg['detector'])
- kwargs = {'input_shape': detector.neck.out_shape}
- reid = create(cfg['reid'], **kwargs)
- tracker = create(cfg['tracker'])
- return {
- "detector": detector,
- "reid": reid,
- "tracker": tracker,
- }
- def _forward(self):
- det_outs = self.detector(self.inputs)
- if self.training:
- emb_feats = det_outs['emb_feats']
- loss_confs = det_outs['det_losses']['loss_confs']
- loss_boxes = det_outs['det_losses']['loss_boxes']
- jde_losses = self.reid(
- emb_feats,
- self.inputs,
- loss_confs=loss_confs,
- loss_boxes=loss_boxes)
- return jde_losses
- else:
- if self.metric == 'MOTDet':
- det_results = {
- 'bbox': det_outs['bbox'],
- 'bbox_num': det_outs['bbox_num'],
- }
- return det_results
- elif self.metric == 'MOT':
- emb_feats = det_outs['emb_feats']
- bboxes = det_outs['bbox']
- boxes_idx = det_outs['boxes_idx']
- nms_keep_idx = det_outs['nms_keep_idx']
- pred_dets, pred_embs = self.reid(
- emb_feats,
- self.inputs,
- bboxes=bboxes,
- boxes_idx=boxes_idx,
- nms_keep_idx=nms_keep_idx)
- return pred_dets, pred_embs
- else:
- raise ValueError("Unknown metric {} for multi object tracking.".
- format(self.metric))
- def get_loss(self):
- return self._forward()
- def get_pred(self):
- return self._forward()
|