123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- __all__ = ['CenterNet']
- @register
- class CenterNet(BaseArch):
- """
- CenterNet network, see http://arxiv.org/abs/1904.07850
- Args:
- backbone (object): backbone instance
- neck (object): FPN instance, default use 'CenterNetDLAFPN'
- head (object): 'CenterNetHead' instance
- post_process (object): 'CenterNetPostProcess' instance
- for_mot (bool): whether return other features used in tracking model
- """
- __category__ = 'architecture'
- __inject__ = ['post_process']
- __shared__ = ['for_mot']
- def __init__(self,
- backbone,
- neck='CenterNetDLAFPN',
- head='CenterNetHead',
- post_process='CenterNetPostProcess',
- for_mot=False):
- super(CenterNet, self).__init__()
- self.backbone = backbone
- self.neck = neck
- self.head = head
- self.post_process = post_process
- self.for_mot = for_mot
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- backbone = create(cfg['backbone'])
- kwargs = {'input_shape': backbone.out_shape}
- neck = cfg['neck'] and create(cfg['neck'], **kwargs)
- out_shape = neck and neck.out_shape or backbone.out_shape
- kwargs = {'input_shape': out_shape}
- head = create(cfg['head'], **kwargs)
- return {'backbone': backbone, 'neck': neck, "head": head}
- def _forward(self):
- neck_feat = self.backbone(self.inputs)
- if self.neck is not None:
- neck_feat = self.neck(neck_feat)
- head_out = self.head(neck_feat, self.inputs)
- if self.for_mot:
- head_out.update({'neck_feat': neck_feat})
- elif self.training:
- head_out['loss'] = head_out.pop('det_loss')
- return head_out
- def get_pred(self):
- head_out = self._forward()
- if self.for_mot:
- bbox, bbox_inds, topk_clses = self.post_process(
- head_out['heatmap'],
- head_out['size'],
- head_out['offset'],
- im_shape=self.inputs['im_shape'],
- scale_factor=self.inputs['scale_factor'])
- output = {
- "bbox": bbox,
- "bbox_inds": bbox_inds,
- "topk_clses": topk_clses,
- "neck_feat": head_out['neck_feat']
- }
- else:
- bbox, bbox_num, _ = self.post_process(
- head_out['heatmap'],
- head_out['size'],
- head_out['offset'],
- im_shape=self.inputs['im_shape'],
- scale_factor=self.inputs['scale_factor'])
- output = {
- "bbox": bbox,
- "bbox_num": bbox_num,
- }
- return output
- def get_loss(self):
- return self._forward()
|