12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- __all__ = ['BlazeFace']
- @register
- class BlazeFace(BaseArch):
- """
- BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs,
- see https://arxiv.org/abs/1907.05047
- Args:
- backbone (nn.Layer): backbone instance
- neck (nn.Layer): neck instance
- blaze_head (nn.Layer): `blazeHead` instance
- post_process (object): `BBoxPostProcess` instance
- """
- __category__ = 'architecture'
- __inject__ = ['post_process']
- def __init__(self, backbone, blaze_head, neck, post_process):
- super(BlazeFace, self).__init__()
- self.backbone = backbone
- self.neck = neck
- self.blaze_head = blaze_head
- self.post_process = post_process
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- # backbone
- backbone = create(cfg['backbone'])
- # fpn
- kwargs = {'input_shape': backbone.out_shape}
- neck = create(cfg['neck'], **kwargs)
- # head
- kwargs = {'input_shape': neck.out_shape}
- blaze_head = create(cfg['blaze_head'], **kwargs)
- return {
- 'backbone': backbone,
- 'neck': neck,
- 'blaze_head': blaze_head,
- }
- def _forward(self):
- # Backbone
- body_feats = self.backbone(self.inputs)
- # neck
- neck_feats = self.neck(body_feats)
- # blaze Head
- if self.training:
- return self.blaze_head(neck_feats, self.inputs['image'],
- self.inputs['gt_bbox'],
- self.inputs['gt_class'])
- else:
- preds, anchors = self.blaze_head(neck_feats, self.inputs['image'])
- bbox, bbox_num = self.post_process(preds, anchors,
- self.inputs['im_shape'],
- self.inputs['scale_factor'])
- return bbox, bbox_num
- def get_loss(self, ):
- return {"loss": self._forward()}
- def get_pred(self):
- bbox_pred, bbox_num = self._forward()
- output = {
- "bbox": bbox_pred,
- "bbox_num": bbox_num,
- }
- return output
|